Building High Performance Homes

Janet McIlvaine and David Beal
November 20, 2008
Mobile, Alabama
Welcome and Introductions
Welcome and Introductions

- Janet McIlvaine and David Beal
 - Florida Solar Energy Center, Research Institute of UCF
 - Lead 1 of 6 Department of Energy Building America Teams
 - Building America Industrialized Housing Partnership (BAIHP)
 - Research Analysts

- Brenda C. Lawless and Brian Stanley
 - Mobile County Habitat for Humanity
 - Partners in Building America's Gulf Coast High Performance Demonstration Housing Project

- HBA of Metro Mobile
 - Promotional Partner
DOE Building America Program

- www.buildingamerica.gov
- Public-Private Research Initiative
- Public: DOE funded teams of researchers
- Private: Home builders across America
- Cost Shared Research:
 - Build high performance houses together
 - Document problems and solutions
 - Conduct training to spread lessons learned
Building America Goals

• Move standard practice toward “High Performance”
• Climate specific solutions
• Work in key markets
• With production builders
• Produce whole communities
• **Systems engineering** approach
 – aka “house as a system” or “whole house” approach
• Transfer “Lessons Learned” to other builders
 – Workshops, documents, case studies
DOE Building America Program

• “High Performance” Goals
 – 30-70% energy savings (Mobile goal ~30% savings)
 – First year positive cash flow
 – While improving indoor air quality, durability, and comfort
 – How is this possible…
BAIHP is estimated to save over $14,000,000/yr in 168,000+ homes
G.W. Robinson Builders, Inc. – Gainesville, FL

- Progressively increased energy efficiency over time
- HERS Index <70 saving ~ 30% on a whole house basis
- 400+ Houses completed and sold
- Lead – Florida H.E.R.O. (Ken Fonorow)
G.W. Robinson Builders, Inc. – Gainesville, FL

- 1st year positive cash flow

<table>
<thead>
<tr>
<th></th>
<th>First Cost</th>
<th>Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(7%, 30 yr mortgage)</td>
</tr>
<tr>
<td>Total Incremental Cost</td>
<td>$2,021</td>
<td>$161</td>
</tr>
<tr>
<td>(includes 10% mark up)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Annual Energy Savings (wrt typical)</td>
<td></td>
<td>$863</td>
</tr>
<tr>
<td>Net 1st Year Cash flow</td>
<td></td>
<td>$702</td>
</tr>
</tbody>
</table>
G.W. Robinson Builders, Inc. – Gainesville, FL

- **Heating/Cooling Equipment features**
 - SEER 15 Air conditioner, 93% AFUE Gas Furnace
 - ACCA Manual J system sizing
 - Ducts sealed with mastic and tested
 - Interior air handler closet

- **Water Heating Equipment**
 - EF=0.84 Tankless gas water heater

- **Heating/Cooling Load Reduction Features**
 - Energy Star Windows (0.28 SHGC, U=.39 Vinyl Low-e)
 - R-30 with Radiant barrier vented attic
 - 2 x 4 Advanced Framing w/R-13 cellulose
 - Wide Overhangs on Patio doors and windows
 - Passes Energy Star Thermal Bypass Inspection

- **Indoor air quality, durability, and comfort features**
 - Ducted kitchen and bath exhaust fans
 - Passive, positive pressure outside air ventilation
 - Drainage plane and flashing details
 - Passive return air pathways from bedrooms
 - Low VOC paints

- **Verification**
 - Blower door and duct leakage testing
Lakeland Habitat for Humanity – Lakeland, FL

• Goal: Cost Effectively Exceed Energy Star
• Builder Motivation – Reduce total cost of ownership
• Started with Energy Star ’99 in 2001, progressively improved
• HERS Index = ~70 saving about 30% in whole house energy use
• Understand Builder Needs:
 – Volunteer Friendly
 – Proven
 – Readily Available
 – No Maintenance Burdens
• Estimated First Cost Increase: $2000
• Detailed Case Study: www.baihp.org/habitat/pdf/Lakeland-Habitat-Case-Study.pdf
Lakeland Habitat for Humanity – Lakeland, FL

• 1st year positive cash flow

<table>
<thead>
<tr>
<th>Total Incremental Cost</th>
<th>First Cost</th>
<th>Annual Cost (0%, 20yr HFH mortgage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000</td>
<td></td>
<td>$100</td>
</tr>
<tr>
<td>Estimated Annual Savings</td>
<td></td>
<td>$250</td>
</tr>
<tr>
<td>Net 1st year cash flow to owner</td>
<td></td>
<td>$150</td>
</tr>
</tbody>
</table>

• $5000 grant from city for meeting energy standards
Lakeland Habitat for Humanity – Lakeland, FL

• Heating/Cooling Equipment
 – SEER 14, HSPF 8+ Heat Pump sized with ACCA Manual J
 – Duct system sealed with mastic and tested
 – Interior air handler closet, ducted central return
• Heating/Cooling Load Reduction
 – R-30 Ceiling and R-13 Wall Insulation
 – Passes Energy Star Thermal Bypass Inspection
 – Radiant Barrier below roof decking
 – Infiltration control (house wrap air barrier + extensive air sealing)
 – Energy Star Windows shaded by overhangs, Porches & shade trees
• Appliances & Lighting
 – Water heater timer
 – Energy Star Refrigerator
 – 20% CFL Lighting
• Indoor air quality, durability, and comfort features
 – Ducted kitchen and bath exhaust fans
 – Passive, positive pressure outside air ventilation
 – Drainage plane and flashing details
• Verification
 – Blower door and duct leakage testing
“Systems Engineering” Approach to Change

“Lessons learned” Translated into case studies, publications, & “Best Practices” documents
Systems Engineering Approach

• More Case Studies & free BA resources online:
 – www.baihp.org
 • Case studies, publications, and presentations
 – www.baihp.org/habitat
 • Habitat specific information
 – www.baihp.org/gulfcoast
 • Demonstration project summary
 – www.buildingamerica.gov
 • Best practices, program overview, searchable database of publications
Systems Engineering Concepts

• “House as a System” thinking
 – As we make improvements, make sure we aren’t creating new problems
• Involve whole construction team
• Anticipate and solve common problems on paper
• Reduce call backs by evaluating warranty claims
• Work with “off the shelf” products
• Seek first year positive cash flow
• Prototype, evaluate, and refine solutions
Building America Technical Assistance

• Partner steps toward reaching 30% whole house savings goal
 – First – Preliminary Evaluation
 • Combustion Safety
 • Warranty Issues
 • Energy Code Compliance
 • Begin “Systems Engineering” process
 – Next - Energy Star for Homes
 • HERS 85 + prescriptive req’s
 • Ensure no IAQ, durability, comfort problems
 – Next – Exceed Energy Star
 • HERS 70-75
 • Ensure no IAQ, durability, comfort problems
Systems Engineering Process

- Preliminary Evaluation
- Develop a package of improvements
- Work with project team to anticipate and solve problems before implementation. Prototype and refine individual improvements, if necessary
- Build a TEST house
- Refine package as needed
- Integrate into production process

This is the process we used for GC Demonstration Houses...
Project Introduction:
Building America’s Gulf Coast High Performance Affordable Housing Demonstration Project
Gulf Coast High Performance Affordable Housing Demonstration Project Goals

• 30% whole house energy savings
 – Proven results in Florida, but in a new market
 – Technical assistance alone did not attract much interest

• Demonstration houses show case…
 – NOT cutting edge technology
 – BUT an achievable, replicable high performance package that most builders can adapt to their houses

• Affordable housing focus to emphasize feasibility
DOE Gulf Coast High Performance Affordable Homes

- http://www.baihp.org/gulfcoast/

- **Goals**
 - HERS Index 70-75
 - $2,000 first cost
 - First year positive cash flow
 - Meets Indoor Air Quality, Durability, and Comfort Criteria
 - Conduct local builder training

- **Four Builder Partners**
 - Habitat for Humanity Affiliates
 - Baton Rouge, New Orleans, Slidell, and Mobile
New Orleans Area Habitat

Mobile County Habitat

Habitat of Greater Baton Rouge

East St. Tammany Habitat (Slidell)
First Year Positive Cash Flow

<table>
<thead>
<tr>
<th></th>
<th>First Cost</th>
<th>Annual Cost (0%, 20yr HFH mortgage)</th>
<th>Annual Cost (7%, 30 yr Mortgage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Incremental Cost</td>
<td>$2,000</td>
<td>$100</td>
<td>$144</td>
</tr>
<tr>
<td>Estimated Annual Savings</td>
<td></td>
<td>$250</td>
<td>$250</td>
</tr>
<tr>
<td>Net 1st year cash flow to owner</td>
<td></td>
<td>$150</td>
<td>$106</td>
</tr>
</tbody>
</table>
Gulf Coast High Performance Affordable Homes – Systems Engineering Process

• Preliminary Evaluation
 – IAQ, Durability, Comfort, and Energy (HERS Index)
• Identify “Package” & Develop Strategies
• Build a Trial House (Afternoon Tour)
• Refine Package
• Build Demonstration House
• Conduct Training with Home Building Industry
Systems Engineering Approach

- **Avoidable IAQ, Durability, and Comfort Problems …**
 - Combustion safety issues
 - Flame roll out and exhaust back drafting
 - Asthma/allergy triggers
 - Pollen, roach dander, dust mites
 - Bulk water and humidity issues
 - Biological growth, buckling, bulging, sagging, standing water, rusting, shorting electrical connections, water logged materials and fixtures, wet insulation, condensation
 - Comfort
 - “My bedroom/kitchen/family room never gets cool/warm”

- **Many of these issues are driven by the same dynamics of air, heat, and moisture/water movement**
Building Science
Fundamentals
Building Science Background

- Our building science scope...
 - Energy use and efficiency, indoor air quality (IAQ), durability, and comfort
- Dynamics and management of air, heat, & moisture/water
- Outside our scope...
 - Structural integrity – engineering
 - Life safety (including disaster resistance) – codes
Typical Energy Use Profile

Average Annual Energy Use
Measured in 10 Florida Habitat Homes

- 40.7% Heating & Cooling
- 19.6% Other
- 7.9% Refrigerator
- 8.6% Dryer
- 4.4% Stove
- 18.7% Water Heating

Avg. for ten control houses
Total=43 kWh/day
Typical Energy Use (& Conservation) Profile

- **40% = Heat and Cooling**
 - Efficient Equipment – Mechanical system
 - Load Reduction - Enclosure

- **20% = Water Heating**
 - Efficient Equipment

- **20% = Appliances (stove, dryer, refrigerator)**
 - Energy Star Appliances

- **20% = “Other” including lighting**
 - Efficient Lighting
Building Science Back Ground

• Air, heat, moisture, and water often move together

• By controlling movement, we control
 – Indoor air quality
 • Example: entry of outside pollutants, soil gases
 – Durability
 • Example: path of rain over building materials, indoor humidity levels
 – Comfort and energy efficiency
 • Heat gain and loss, air flow in each room, humidity levels
 – Multiple benefits from individual improvements
 • Example: infiltration control

• Creating a “controlled” environment
Building Science Terms

- **Conditioned space**
 - Controlled environment – inside
- **Unconditioned space**
 - Less controlled environment – attic, crawl spaces
- **Outside**
 - Uncontrolled environment - outside
- **Building enclosure** ("envelope")
- **Mechanical system**
Movement of Air, Heat, Moisture and Water

• Building enclosure ("envelope")
 – Boundary
 – Materials and assemblies
 • Foundation, floor, walls, roof & ceiling
 – Air barrier + thermal barrier + drainage plane
 – Controls air, heat, and water flow
 – how…?

• Mechanical system
 – Moves air, removes heat and humidity
 – Heating/Cooling + ventilation + exhaust fans
Movement of Air, Heat, Moisture, & Water

• Air, heat, and moisture move in response to differences…temperature or pressure

• Direction of Movement…
 – “High” goes to “Low”
 – Air moves from high pressure or temp toward low
 • Air barrier stops it
 – Heat moves from high temp toward low temp
 • Thermal barrier stops it
 – Water moves from high ground toward lower
 • Drainage plane and flashing direct it
Movement of Air, Heat, Moisture, & Water

• House is full of air
 – 1 cfm “in” = 1 cfm “out”
 – Every 1 cfm exhausted is replaced by 1 cfm

• Example: Box fan in window
Movement of Air, Heat, Moisture, & Water

• To have movement, need three things…
 – Air/heat/moisture + hole + driving force

• Example: Drinking straw
Control Movement of Air, Heat, Moisture, & Water

• To control flow…
 – Minimize source
 • Nearly impossible
 – Minimize holes
 • Continuous boundaries between source & cond. Space
 • Air barrier + thermal barrier + drainage plane
 • At joints and penetrations…ship lap and/or seal
 – Minimize driving forces
 • Can’t eliminate temperature difference
 • Maintain neutral air pressure
Controlling Water, Air, and Heat

Principal Strategies

Water:
- Dry Materials
- Continuous Ext. finishes
- Continuous Drainage Plane
- Flashing
- Assemblies that Dry
- Exhaust wet air

Air:
- Continuous Air Barrier
- Sealed Duct System
- Neutral Air Pressure

Heat:
- Continuous, Even Layer of Insulation
Controlling Water, Air, and Heat

Siding and Shingles are first line of defense against liquid water
Continuous drainage plane behind vented (vinyl, wood, fiber cement) siding.

- Tar Paper/Felt (Ship lapped)
- House Wrap (sealed at edges and seams)
- Rigid Insulation (T&G or sealed at edges and seams)
Controlling Water, Air, and Heat

Principal Strategies

Water:
• Dry Materials
• Exterior finishes
• Continuous Drainage Plane
• Flashing
• Assemblies that Dry
• Exhaust wet air

Air:
• Continuous Air Barrier
• Sealed Duct System
• Neutral Air Pressure

Heat:
• Continuous, Even Layer of Insulation
All these materials are drainage planes. Which are also air barriers?

- Tar Paper/Felt (Ship lapped)
- House Wrap (sealed at edges and seams)
- Rigid Insulation (T&G or sealed at edges and seams)
All these materials are drainage planes. Which are also air barriers?

Tar Paper/Felt (Ship lapped) **Is NOT an Air Barrier**

House Wrap (sealed at edges and seams) **IS an Air Barrier**

Rigid Insulation (T&G or sealed at edges and seams) **IS an Air Barrier**
Continuous Air Barrier

• Controls Air Flow and Air Transported Moisture Flow
 – Separates conditioned space from unconditioned
 – Surrounds and contains “conditioned space”
 – Elements
 • Slab/floor decking
 • Sill seal or equivalent
 • House wrap or
 • Rigid insulation sealed at edges and seams
 • Top plates (exterior AND interior walls)
 • Ceiling drywall
 • Sealant in penetrations of above surfaces
 • Ducts and air handler, if in unconditioned space…
Sealed Duct System

- Duct system in unconditioned spaces is part of the house air barrier
- Each duct surrounds little piece of conditioned space
- Air handler is part of the air distribution system
- Special conditions in ducts
 - Very high pressure in supply
 - Very low pressure in return
 - Both in air handler
 - Very cold/hot air in supply
 - High potential for changing house air pressure
Unbalanced house air pressure

• Duct leakage can lead to uncontrolled air flow
 – From out to in, from in to out, and both at the same time
 – can heighten natural infiltration significantly
 – Can cause whole house depressurization or pressurization
 – Can lead to combustion safety issues, so can other causes of house depressurization such as…
 • Exhaust fans
 • Closed interior doors (without ducted returns)
 • (Demonstration of Air Flow Dynamics after break)
What combustion safety problem?
Water is a byproduct of combustion

- 1 cubic foot natural gas releases 1000 Btus
- 100K Btuh furnace burns about 100 cuft/hr
 - About 200 cuft water vapor per hour
 - Slightly more than 1 gallon water per hour
- Typical Btuhr Input (residential)
 - Furnace 50K-200K
 - Water Heater 30K-75K
 - Ranges 10K-15K
Naturally Aspirated Combustion Equipment
• And now we pause for a demonstration of air flow dynamics…and combustion safety discussion
Combustion safety problems produced by space depressurization

- Normal Draft CAZ wrt Out: 0 pascal
- Spillage CAZ wrt Out: -5 pascals
- Backdraft CAZ wrt Out: -8 pascals
- Incomplete Combustion CAZ wrt Out: -15 pascals
- Flame Rollout CAZ wrt Out: -25 pascals
Prevent combustion safety problems…

• Switch to non-atmospherically vented equipment
• Make combustion “zone” completely connected to unconditioned space or outside AND completely separated from conditioned space by a continuous air barrier and thermal barrier
• Always provide combustion “zone” with adequate (idiot proof) combustion air using the National Gas Code guidelines
80%, mid-efficiency or induced draft furnace
Direct Vent Water Heater
Sealed Combustion Condensing 90%+ AFUE Furnace
Gas Appliances in Confined Space

Confined Space: Volume Less than 50 Cu. Ft. / 1000 Btuh
All Air From Inside the Building

Example:

- Furnace = 100,000 btu/hr input
- Water heater = 34,000 btu/hr input
- Total btu/hr = 134,000 btu/hr input
- 1 square inch per 1,000 btu/hr input required.

- 134,000 / 1,000 = 134 square inches for each opening.
- One within 12 inches of ceiling & one within 12 inches of the floor.

FIGURE 304.3.1
All Air From Outdoors. Method 1a - Vertical

- Example:
 - Furnace = 100,000 btu/hr input
 - Water heater = 34,000 btu/hr input
 - Total btu/hr = 134,000 btu/hr input

- 1 square inch per 4,000 btu/hr input required.

- 134,000 / 4,000 = 33.5 square inches for each opening.
- One within 12 inches of ceiling & one within 12 inches of the floor.
All Air From Outdoors. Method 1b - Horizontal

Example:

- Furnace = 100,000 btu/hr input
- Water heater = 34,000 btu/hr input
- Total btu/hr = 134,000 btu/hr input

- 1 square inch per 2,000 btu/hr input required.
- 134,000 / 4,000 = 67 square inches for each opening.
- One within 12 inches of ceiling & one within 12 inches of the floor.
All Air From Outdoors. Method 2

- Example:
 - Furnace = 100,000 btu/hr input
 - Water heater = 34,000 btu/hr input

- Total btu/hr = 134,000 btu/hr input

- 1 square inch per 3,000 btu/hr input required.

- 134,000 / 4,000 = 44.7 square inches for each opening.

- Within 12 inches of ceiling

Figure M703.2(d)
Whole house air pressure

• For Hot Humid Climate
 – Negative House Pressure – Bad
 – Neutral House Pressure – Good
 – Positive House Pressure – Better

• Causes of negative house air pressure
 – Exhaust fans
 – Closed interior doors
 – Supply duct leakage
 – Supply duct leakage > return duct leakage

• To induce slight positive pressure…
 – Small amount of filtered, controlled outside air
• Air barrier and duct system holes are hard to see, but can be measured with a testing equipment.
Controlling Water, Air, and Heat

Principal Strategies

Water:
- Dry Materials
- Exterior finishes
- Continuous Drainage Plane
- Flashing
- Assemblies that Dry
- Exhaust wet air

Air:
- Continuous Air Barrier
- Sealed Duct System
- Neutral Air Pressure

Heat:
- Continuous, Even Layer of Insulation
Controlling Water, Air, and Heat
Thermal Barrier

- Install in a continuous, even layer
- Missing insulation isn’t seen, it’s felt.

- Like a hole in your coat.
Building Science Summary

• Driving Forces
 – Temperature difference
 – Pressure difference

• Control Boundaries
 – Air barrier, sealed duct system, thermal barrier, drainage plane

• Energy Star for New Homes
 – Thermal Bypass Inspection covers air and heat flow!
 – www.energystar.gov
Step 1 – Achieve Energy Star

- Home energy rating system index
- Energy star program overview and technical requirements
- Thermal bypass inspection
- Overview of Afternoon Field Activities
Preliminary Evaluation

- The HERS Index
- HERS=Home Energy Rating System
- Compares a “designed” or “as built” home
- To the HERS “Reference Home”
 - same size, wall areas, structural system, fuel
 - Minimum efficiency equipment
 - Insulation etc to comply with 2004 International Energy Conservation Code (IECC)
Preliminary HERS Index Evaluation for Demonstration House Partners

HERS Index Scale
A house compliant with the International Energy Conservation Code (IECC) scores 100, each point lower = 1% whole house savings compared to IECC

Existing Homes

IECC

Energy Star 85

Building America Demonstration Goal 70-75

Zero Energy Home 0

115 New Orleans

99 Slidell

95 Mobile

90 Baton Rouge

90 Baton Rouge

95 Mobile

99 Slidell

115 New Orleans