Zelonedom Case Study Report: "Approaching" Zero Energy in the Pacific

² Approaching? Zero Energy in the Pacifi ³ Northwest Marine Climate

4 MICHAEL LUBLINER, CHRIS FUESS, ANDREW GORDON, WILLIAM KINGREY

5 ABSTRACT

6

7 The Zelonedom is a 2400 ft^2 custom single story two bedroom home in Olympia, Washington

8 ("Zelonedom" is phonetic spelling for the Polish term 'green home'.) Building America

9 Industrialized Housing Partnership (BAIHP) staff at Washington State University and Florida

10 Solar Energy Center provided technical assistance in the design, commissioning and monitoring 11 phases of the project. This Northwest ENERGY STAR and Federal energy tax credit qualified

11 phases of the project. This Northwest ENERGY STAR and Federal energy t 12 home includes the following energy efficiency measures:

- 12 home includes the following energy-efficiency measures:
- 13
- 4.5 kW photovoltaic array
- Ground source heat pump supplying domestic hot water and heat to an R15 radiant slab
- Hybrid low density spray foam / loose fill R-49 ceiling insulation
- R21 low density foam advanced frame walls
- Central energy recovery ventilator connected to a forced air handler filtration system
- Tankless electric hot water heater for master bath with efficient recirculation controls
- Sun tempering & Solar sunspace
 - Energy Star windows, exhaust fans, lighting and appliances
 - TED energy use feedback monitor
- 22 23

21

Home construction began in summer of 2005, and was completed in May of 2006; BAIHP staff conducted field testing and commissioning at that time. The data acquisition system was operational in 2007 and has since been monitoring home energy use since.

27

This paper presents modeled and measured overall home energy performance, and an evaluation

- of the innovative energy saving and PV systems. The home benchmark is roughly 54% 69%
- 30 whole house source and site savings without and with PV, respectively (Hendron 2004),
- 31 (Hendron 2005). Source savings without PV is 164.7 Mbtu; with PV, the source savings is 208.2
- 32 Mbtu. The model estimates total electric use of 12027 kWh/year without PV, and 8237
- kWh/year net with PV, using Energy Gauge USA version 2.8 (FSEC 2008).
- 34

35 Measured total electric use in 2007-08 without PV was 12,704 kWh/year and 7,750 kWh/year

- net with PV. The photovoltaic system is performing well, providing 4954 kWh/year or 1100
- 37 kWh/year per kW of installed PV. Of the total PV production, 2113 kWh/year was used by the
- house, and 2841 kWh/year returned to the utility. Monitoring results of the ground source heat
- 39 pump, solar sunspace, field tests of building envelope and ventilation systems are presented
- 40 along with suggestions to improve performance.

1 INTRODUCTION

2

3 Homes account for 37% of all U.S. electricity consumption and 22% of all U.S. primary energy

consumption (EIA 2005). This represents a huge opportunity to reduce our energy consumption
 and make cleaner choices for the energy we consume. The U.S. Department of Energy's

and make cleaner choices for the energy we consume. The U.S. Department of Energy's
 Building America (BA) program is working to increase the energy efficiency of new and existing

building America (BA) program is working to increase the energy efficiency of new and existing
 homes while increasing comfort, and durability and reducing resource use. Program partners

8 pursue opportunities to research highly efficient homes with the goal of understanding what

9 works, what doesn't work, and what are the most economic ways to reach very high efficiency

10 targets. The program aims to create cost neutral zero energy homes by 2020. In pursuit of this

11 goal, this home and other research homes around the country designed to approach or achieve the

12 zero energy goal are being built and studied for both technical feasibility, market readiness, and

- 13 cost effectiveness in all climate zones.
- 14

15 In general, a zero energy home is designed to produce as much energy as it consumes over the

16 course of a full year. The BA program definition is more specific: A zero energy home is

designed to offset as much source energy as it consumes over a typical year (based on TMY2

data) using BA Benchmark assumptions for typical occupant behavior. To achieve zero energy,

19 the home exchanges energy with the utility power grid. It delivers energy to the grid when the

20 photovoltaic (PV) system is producing more energy than is being used in the home and draws

from the grid when the PV system is producing less energy than needed in the home.

22

23 BACKGROUND

24

The Zelonedom project demonstrates and promotes innovative energy saving and renewable 25 26 energy technologies while evaluating those technologies' energy performance. Technical support for the project's design, construction, commissioning, monitoring and analysis was 27 funded by the U.S. Department of Energy's Building America Industrialized Housing Program 28 (BAIHP). The project was featured in the March/April 2007 Solar Today Magazine (Figure 1) 29 (Garst, Lubliner 2007). The project's preliminary case study was part of Building America Best 30 Practices Series for High Performance Technologies: Solar Thermal & Photovoltaic Systems in 31 32 the Marine Climate (Baechler et. al. 2007)

33 34

35

36

37

Zelonedom partners included; Washington State University Extension Energy Program (WSU), Sam and Christine Garst (homeowners), Mort Staffors James (Architect), Barrett Burr of Polar Bear Construction, Smart Energy Systems (the installer of the GSHP), PV installer Puget Sound Solar and electric utility Puget Sound Energy. Additional project information can be found at http://www.thegarsts.com.

38 39

This project is a case study in the custom housing sector. Homeowner's willingness to finance the investment to address higher first costs while leveraging a combination of federal tax credits,

the investment to address higher first costs while leveraging a combination of federal tax credits,
 state sales tax exemptions, and utilities incentives, has led to what they believe is "a stable long

42 state sales tax exemptions, and utilities incentives, has led to what they believe is a stable long
 43 term energy investment." The Zelonedom project has helped BAIHP to move toward achieving

44 net zero energy in marine climates.

1 DESIGN

2 3 Note: the following section is excerpted from Building America Best Practices Series for High 4 Performance Technologies: Solar Thermal & Photovoltaic Systems in the Marine Climate 2008. 5 6 The Zelonedom was built with energy efficiency and renewable energy as a high priority, in an effort to evaluate proposed future energy efficiency targets for DOE's Building Technologies 7 Program. Consistent with the BA systems engineering approach, the homeowner notes that 8 9 planning ahead was critical to the project's success: 10 "With something this complex, you don't want to make it up as you go. We tried to do this 11 all on paper before we started pouring concrete. We had the architectural plan, the 12 13 landscaping plan, the lighting plan, even a furniture plan. We knew where we were going from the start. We knew how the systems were going to work together....Changes were 14 very modest and were identified well in advance of finishing the house, so nothing was torn 15 16 out and done again." 17 Even with a few weeks of weather-related delays, the homeowners were able to move in 9 18 19 months after breaking ground, ahead of neighbors who had started building 4 months earlier. 20 Barrett Burr summed up the project from the builder's perspective: 21 22 While the words 'building green' may be new to the general public, building green is 23 beginning to be understood as quality construction. Private, public and government 24 organizations have been developing these ideas for the past twenty years. We have been 25 adopting them all along. It has been called 'Value based construction', 'Model 26 Conservation Standards', 'Energy Efficient Building', 'Energy Budget system design', 27 28 'Eco-friendly/healthy homes'. The Zelonedom house allowed us to take the ideas from all these years of development and blend them with some of the newest available technologies. 29 The result is a home that incorporates proven products and systems that benefit the 30 environmental and homeowners." 31 32 33 Highly efficient, cutting edge technologies are detailed below. 34 35 •

4.5 kW photovoltaic array - The PV system is a 4.5 kW_p DC photovoltaic system using 24-190W Sanyo panels, and two Xantrex inverters. The system performance is 36 monitored by both BAIHP and PSE. PSE has utility meters that monitor monthly total 37 production and PV back to the grid, while the BAIHP meters monitor production on a 15 38 minute basis. There is enough roof space and inverter capacity to add another 12 panels, 39 which is planned for summer of 2009. PV panels are oriented slightly to the Southwest, 40 which optimizes performance after morning fog burn-off. Roof angle is 32 degrees to 41 optimize PV production in the summer. The Sanyo HIT panels are rated at 190 watts, but 42 have a higher "out of box" output of roughly 220W. Two thirds of the output is a result 43 of the mono crystalline silicon wafer and one third from Ultra thin amorphous silicon 44 layer. The amorphous layer is believed to reduce in performance by as much as 5% per 45 year during the first five years; long tem monitoring is under investigation (*Nelson*, 46 2008). 47

Ground source heat pump (GSHP) - The three ton Econar GSHP provides all domestic 1 water (DWH) and space heating needs. A 300 foot long, 5 foot wide and 5 foot deep 2 trench has a total of 1800 linear feet of 3/4" pipe and 1-1/4" manifolds. The highest loop 3 is 3 feet below grade (see Figure 2 for GSHP system design.) The GSHP supplies heat 4 to an 80 gallon storage tank via plate heat exchanger and pump. The tankless electric 5 water heater, designed as master bedroom backup has not been used since the first few 6 7 months of occupancy. Metlund demand re-circulation pump control is used to ensure hot water at bath and kitchen fixtures, saving water and energy. The GSHP provides hot 8 water to up to six independently controlled zones for the radiant floor heating system. 9 The zone control allows for cooler temperatures in bedrooms and for infrequently used 10 rooms like the guest room. Main living space and attic temperatures are maintained 11 above 70F (Figure 3), and above 60F during the 3-1/2 days power outage resulting from 12 2007 ice storm. The radiant floor slab pump controls were modified to limit pump 13 operation during no-heating months. The entire GSHP system is located in a "partially 14 buffered" conditioned mechanical room between the garage and home. The mechanical 15 room is conditioned by standby losses of GSHP system. 16

- R15 radiant slab The floor is insulated to R15 under the entire slab and perimeter.
 Current Building America benchmarking does not account for radiant slab heating
 systems, and higher insulation levels. Washington state code required all radiant floors
 be fully insulated to a minimum of R10.
- **Hybrid ceiling insulation** R19 low density blown-in foam was employed above the ceiling drywall. An additional R38 of blown-in fiberglass insulation was then installed above. The use of the spray foam reduced ceiling air leakage and improved the effectiveness of the entire ceiling insulation systems.
- **Foam advanced frame walls** R21 blown low density foam was employed in the 2x6 26 24" o.c. advanced framing. R15 foam sheathing was employed on below grade walls.
 - Tankless hot water for master bath with efficient re-circulation controls
 - Sun tempering to maximize windows on south side of home

27

- **Solar sunspace** The home is designed with sun tempering to add more southern double 29 • pane glazing and a solar sunspace for solar gain. The sunspace is shaded and 30 mechanically vented to the exterior, using two 120 CFM exhaust fans on a cooling 31 thermostat during non heating months. During the heating season another sunspace 32 supply fan delivers 90 CFM of pre-heated sunspace air to the home and is estimated as 33 providing roughly 450 kWh of useful heat to the home. The GSHP maintains the 34 35 sunspace slab at 60°F to support growing lettuce in winter, as well as avocado and orange plants. The solar sunspace also adds significant aesthetic and functional value to the 36 home. Homeowners have accepted the additional energy use associated with heating the 37 sunspace as a lifestyle choice. 38
- Energy Star windows Wood clad windows were employed, with a NRFC 0.33 U-factor and 0.33 SHGC. Higher SHGC windows were not available to optimize solar gains from south facing windows. Windows and three solartubes and skylights provide abundant natural light to each room. All the windows are operable to allow for cross ventilation for cooling during the summer.
- Ventilation system Ducted kitchen and Energy Star bath exhaust fans provide spot
 ventilation to control indoor humidity levels. Whole house ventilation is provided by an
 Ultimate Air Re-Coupaerator ERV, connected to a fully ducted back-up Rheem #RBHC

1	sin handlen. This sin handlen sumplies filtened fresh sin and enhaust stale sin from the
1	air handler. This air handler supplies filtered fresh air and exhaust stale air from the
2	home. This system is located in a "partially buffered" conditioned attic mechanical
3	room; ductwork is covered by attic insulation.
4	
5	After a few months, homeowners decided to turn off the ducted ventilation system
6	because:
7	• The envelope was not as tight as anticipated (around 4.0 ACH@50PA.)
8	• They perceive no added value in air tempering, filtering and mixing.
9	• No significant humidity levels observed with 2 occupants (see Figure 4).
10	• Central air handler with filter and ERV fans uses almost 300 watts when running
11	• Noise of the ERV and air handler
12	• Energy Star Lighting - the home employed 100% Energy Star screw-in CFL bulbs in a
13	total of 21 fixtures (15 in main living space), and six additional exterior fixtures.
14	Lighting design of the kitchen, which utilizes T-8 linear fixtures above and below
15	cabinets, led to the elimination of many can fixtures. There is not an incandescent bulb in
16	the home, and the hall and walk-in closet lights are turned on and off by motion sensors.
17	The lamps near the motion sensors have prematurely failed, likely due to high cycling
18	rates.
19	• Energy Star Appliances - All appliances are Energy Star, including the clothes washer,
20	refrigerator and dishwasher.
21	• Energy use feedback - The Energy Detective (TED) was installed to help the
22	homeowners evaluate miscellaneous end uses when the PV system was not operating.
23	Confusion related to the TED arose from the PV net metering system. TED is developing
24	new products for use with net metered PV systems. Monitoring of the media center
25	revealed a standby loss of 84 watts continuous, mostly contributed by the cable. This is
26	roughly 745 kWh per year. The homeowner is investigating the use of a manual switch
27	to reduce standby power losses.
28	Other Green Features - Sustainable "green" technologies were incorporated into
29	Zelonedom that utilize recycled and durable materials, reduce indoor air pollutant
30	sources, and provide rainwater management. A separate PV system powers a DC pump
31	for operating a small waterfall. These technologies are part of an overall systems
32	approach intended to improve energy, durability and environmental quality. The
33	homeowner opted not to not pursue LEED certification due to cost, but did achieve the
34	highest green building certification offered by the local builder association.
35	
36	Specifications for each of these technologies are provided in Table 1 . More information is
37	available at: <u>http://www.thegarsts.com</u> .

38 **FIELD TESTING & COMMISSIONING**

Fan de-pressurization field tests were employed to determine the envelope leakage in accordance

40 with ASHRAE Standard 119-1988 (ASHRAE 1988). Fan pressurization tests were employed to

41 determine ERV and air handler filtration system duct leakage in accordance with ASHRAE

- 42 Standard 152 (ASHRAE 2002). Bath fan and ERV flow rates were measured using a
- 43 commercially available flow box, calibrated so that flow rates are determined from a differential

1 pressure measurement across an orifice. The ERV measured supply flow was only 10CFM and

- 2 exhaust 50CFM (**Table 2**).
- 3

4 Although caulking of all seams, plumbing and wiring penetrations was conducted, bower door

- 5 testing revealed significant leakage of the windows and some leakage at the slab to wall bottom
- 6 plate. These leakage paths resulted in a higher than anticipated envelope leakage of 4.4 ACH_{50} .
- 7

8 **DATA ACQUISITION**

A data acquisition system was installed to determine home energy performance. The system was
designed to allow disaggregation of the PV energy production and some end uses. A channel
map of data collected is provided in **Appendix B**.

12

13 MONITORING RESULTS:

14

15 <u>Annual Electricity Use:</u> Measured overall home energy for a 12 month period is presented in

Figure 5. Measured total electric use in 2007-08 without PV was 12,704 kWh/year and roughly

17 7,787 kWh/year net with PV. Regression analysis of space heat provided by the ground source

18 heat pump versus temperature difference suggests a design load of roughly 31,000 btuh (see

- 19 **figure 8.**)
- 20

21 <u>PV System:</u> Both the homeowner and BAIHP staff monitored the PV system. The system is

22 performing well, with output measured at 4954 kWh/year or 1100 kWh/year per kW of installed

PV. Of the total PV production, 2113 kWh/year was used by the house, and 2841 kWh/year

returned to the utility. Ongoing investigations will focus on potential PV degradation over the

next few years and the impact of the 12 additional PV panels.

26

27 Ground Source Heat Pump: In 2008, BAIHP staff began the process of analyzing the ground

source heat pump. BAIHP staff collected one minute data on ground source heat temperature

and flow to determine per cycle space and hot water COP (see **Figures 9 and 10**). COP

30 estimates based on data logger measurements suggest highest (over 4 to 5) COP during space

heating only conditions in early winter (see **Figure 11**.) Lowest COP of 2 to 3 were found

during spring and entering into DHW only mode (see Figure 12.) Appendix C provides details

33 on the methodology to determine the GSHP COP.

34

35 Ground loop flow rates were estimated to be 11.8 GPM based on 12 psi pressure drop

36 measurements across the earth loop heat exchanger using manufactured supplied flow versus

37 pressure drop engineering data and adjusting flow rates to reflect the 20% methanol ground loop

heat transfer loop mixture. A one time wattage measurement of the earth loop dual pump pack,

39 DHW loop pump, and slab pumps was conducted as shown in the table in **Figure 2** Efforts are

40 underway to further evaluate COP and optimize piping design and pumping performance to

- 41 improve COP, and evaluate use of de-superheater option.
- 42

43 <u>Solar Sunspace</u>: BAIHP staff are evaluating using the home's sunspace to provide solar gain

- 44 benefits to the house during the heating season via a thermostat-controlled exhaust fan that
- delivers heat to the home when the sunspace reaches roughly 75F. Figure 6 shows warm air

1 (red) delivered to the house on two consecutive mild days in October (outside temperatures in

2 yellow). As fan turns on (purple), sunspace temperatures (green) drop below the house

- 3 temperature (blue) while staying above the outside temperature (yellow) providing solar gains to
- 4 home. In summer all windows are opened and the exhaust fan turned on. The homeowner has
- 5 been experimenting with white washing and shading of glazing to limit summertime
- 6 temperatures; however, summer over-heating remains an unresolved comfort issue. Sixteen 55
- 7 gallon water drums are used as thermal mass in the sunspace, in addition to the floor and plant
- 8 boxes. **Figure 7** shows the estimated 450 kWh per year from heat delivered form the sunspace
- 9 to the home along with the fan energy of heating season supply fans and summer cooling exhaust
- fans. Simple modeling estimates the home with an unheated sunspace would use 4,320
 kWh/year, 5,272 kWh/year with sunspace heated to home temperature and 5,272 kWh/year if not
- installed at all. Investigations are underway to further evaluate performance, and benefits of
- 13 sunspace pre-heating supply air to house to offset potential mechanical ventilation (if used). The
- 14 use of unglazed solar thermal panels in the peak of the sunspace may also be evaluated to reduce
- 15 summertime sunspace temperature and exhaust fan energy use as well as pre-heat DHW for
- 16 GSHP.
- 17

18 MODELING AND BAIHP BENCHMARK:

19

20 The benchmark estimated source and site savings derived from EGUSA version 2.8 are

- presented in **Table 3**. The home "as found" (case #2) benchmarks at roughly 54.4% and 68.8%
- 22 whole house source and site savings without and with PV respectively. Source savings without
- PV is 164.7 Mbtu; with PV, the source savings is 208.2 Mbtu (see **Appendix G**.) **Table 3** also
- 24 provides benchmark and end-load energy use, with total electric use of 12,027 kWh/year without
- 25 PV and 8,237 kWh/year net with PV. A variety of parametric analyses were conducted to
- evaluate various envelope and equipment options, including PV. A best case was evaluated
- assuming optimum ventilation, tighter envelope, GSHP COP of 5.0 in space heating mode and additional PV_{i} . This hast ease (numbe) has showed by 55.4 % and 60.8% which have
- additional PV. This best case (purple) benchmarks at roughly 55.4 % and 69.8% whole house
 source and site savings without and with PV respectively. Other measures that were discussed
- source and site savings without and with PV respectively. Other measures that were discussed
 but not employed that would increase benchmark include adding R5+ wall foam sheathing to
- above grade walls and the use of triple pane windows. These measures were not evaluated in the
- best case. These measures may be less costly had different window frames and non-spray foam
- 33 wall cavity insulation been used.
- 34

35 COST DATA & MONTHLY CASH FLOW:

36

Table 4 provides an estimate of incremental cost relative to minimum code, assuming a 10%

- ³⁸ builder markup and 30 year mortgage at 7% interest. Simple Cash Flow without tax credits and
- 39 utility rebates was found to be:
- 40

41 Without PV:

- 42 13110 kWh/year saved = \$1180/year or \$98.32/month
- 43 169/month extra mortgage 98/month saved at 0.09/kWh = 71 extra cost per month
- 44
- 45 **With PV:**
- 46 16945 kWh/year saved = 1525/year or 127/month extra

- 378/month extra mortgage 127/month saved at 0.09/kWH = 251 extra cost per month 1
- 2
- The PV system received a \$2400 initial utility rebate and a \$750 /year 10 year production credit 3
 - 4 at \$0.15/kWh (a \$0.50/kWh credit would have been provided, had the PV modules been
 - manufactured in Washington State (WAC 5101)). The homeowner also received a \$2000 federal 5
 - renewable tax credit and other incentives, providing a positive cash flow for over ten years. 6
 - 7
 - 8 Appendix A includes a discussion of cash flow economics and cost neutral variables. Cash flow
 - analysis of PV systems with rebates, tax credits and incentives provide a positive cash flow for 9
- over ten years. Refinancing at lower interests rates, higher rebates and tax credits can further 10
- extend positive cash flow, especially if electricity rate increases continue and resale equity is 11
- considered. The homeowners are counting on higher fuel escalation and discount rates to 12 address the negative cash flows in future years. 13
- Appendix E provides the homeowner cash flow analysis spreadsheet, which considers utility 14
- rebates, and tax credits. 15
- 16

17 **CONCLUSIONS:**

18

- The Zelonedom is a excellent example of a partnership between; owner, architect, builder and 19
- 20 utility PV program with strong environmental values. The project has achieved 68% whole
- house source energy savings on the BA benchmark in a marine climate. 21
- 22
- The project highlights the significant space and domestic water heating performance of an 23
- innovative ground source heat pump system. Lessons learned (see Appendix A) regarding "build 24
- tight and ventilate right" highlight the need for on-going BA field support and training as well as 25
- 26 the importance of proper design and commissioning of ventilation systems.
- 27
- There may also be a need to develop better simulation models for these high performance homes 28
- with GSHP radiant floor and DHW heating, as well as other innovative systems. 29
- 30

ACKNOWLEDGMENTS: 31

32

This work is sponsored in large part by the U.S. Department of Energy Office of Building 33

- Technology's Building America Industrialized Housing program under cooperative agreement 34
- DE-FC36-99GO10478. Additional support has been provided by Danny Parker, Subrato 35
- Chandra, Janet McIlvaine and David Beal at the Florida Solar Energy Center, Luke Howard, 36
- Vicky Zarrell, Rob Penny and Todd Currier at the Washington State University Energy Program 37
- 38 USDOE's Building America Program, Northwest Energy Efficiency Alliance, and Energy Star
- Northwest Program. 39
- 40
- Special thanks to: Sam and Cristine Garst, owners; Mort James & Christian Overby, architect; 41
- Barrett Burr, General Contractor; Jeremy Smithson, Solar Systems; Wayne Medrud, HVAC; 42
- Tom St. Louis, Product Consultant; Puget Sound Energy staff, utility; George James, USDOE; 43
- 44 and Terry Gilbrith, Pacific Northwest Laboratory.

- 1 More information on USDOE's Building America Industrialized Housing Partnership can be
- 2 found at http://www.baihp.org.

3 **REFERENCES**

- Baechler, M.; Lubliner, M.; et al., "Sam and Christine Garst Build a House." Building America
 Best Practices Series for High Performance Technologies: Solar Thermal & Photovoltaic
 Systems in the Marine Climate.
- 8 EIA. 2005. Annual Energy Review 2005, United States Energy Information Administration,
 9 DOE/EIA- 0384(2005).
 10
- 11 Florida Solar Energy Center. Energy Gauge USA, Version 2.8. Cocoa Beach, Fla.: FSEC, 2008.
- Florida Solar Energy Center. Web-Get database management system, version 4.0. Cocoa
 Beach, Fla.: FSEC, 2009
- Garst, Lubliner "Advancing a Green Dream." Article published in March/April 2007 Solar
 Today
- 17 I 18

15

- Hendron, B., et al., 2004. Building America Performance Analysis Procedures, Revision 1.
 National Renewable Energy Laboratory, NREL/TP-550-35567.
- Hendron, B., et al., 2005. Building America Benchmark Definition, Updated December 29,
 2004. National Renewable Energy Laboratory, NREL/TP-550-37529. (An update on this
 document was released in 2007.)
- 26 Nelson, M., 2008. Personal interview regarding PV design for the Zelonedom.
- 28 WAC. Washington State Senate Bill 5101

2	
Square footage	2400 sq. ft.
Number of bedrooms	2
Number of occupants	2
Design heating load	31 kbtu/hr @ 17° F out, 70°F in (based on regression)
Walls	R21 blown low density foam (Icynene)
	2x6 24" o.c. advanced framing
Ceiling	R19 low density blown-in foam (Icynene)
	19 blown-in fiberglass insulation (Owens Corning)
Floor (slab on grade)	R15 rigid foam 3" under slab
	R10 on side (Owens Corning)
Windows 25% glass/floor	U-factor = 0.33 , SHGC = 0.33
2' overhangs on south	Anderson, LowE-heat mirror model
Solar Sunspace w/mechanical fans	U-factor = 0.4 summer interior shades
Exhaust to home when heating season	880 gallons of 55 gal drum water thermal mass
Exhaust to outside when not heating	
Combination DHW and Space	Econar 3 ton GSHP to 80 gal tank via plate heat exchanger.
Heating with Ground Source	Metlund hot water recirculation control Tankless DHW for
Heat Pump (GSHP)	master bedroom backup not used.
	GSHP to 80 gal tank for radiant slab to 5-6 zones
Whole House Ventilation, filtration	Ultimate Air RecoupAerator ERV ducted to forced air-
and mixing (not used after 1 st year)	handler with filter. System and ducting located in
	conditioned mechanical room
Spot exhaust ventilation	Energy Star bath exhaust fans
Energy Star Lighting	Compact fluorescent fixtures and bulbs (100%)
Appliances	Energy Star clothes washer - Bosch #WFMC3200
	Energy Star refrigerator - Jenn-Aire #JFC-2089HEP
	Energy Star dishwasher – Asko # D3251
Solar Electric	Nominal 4.5 kW _p DC photovoltaic system
	24-190W Sanyo panels, 2-Xantrex inverters
Electricity Energy Monitoring	The Energy Detective (TED) - removed due to PV
Other Green Features	Low water use fixtures and appliances
	GreenGuard and GreenSeal Low VOC paints
	Moisture resistance wall drainage system & Timbor borax
	mold growth inhibitor
	5000 gallon rain cistern for landscape & sunspace
	PV powered waterfall
	Recycled products include EcoSurface floor tiles, ceramic
	tile and bamboo.
	50 year shingles to re-roof at PV replacement
	Smartwood & FSC certified and finger-jointed lumber
	Driveway with pervious concrete
	No impervious surfaces beyond the homes footprint.
Table 1 -	- Zelonedom, Energy Features

	Run #	Ventilation Scenario	Vent Type	supply cfm	Exhaust cfm	Run time	watts	efficiency	ACH @50PA
	1	no ventilation	none	0	0	0%	0	0	4.38
	2	as found not running	ERV+AH	10	50	0%	295	87	4.38
	3	as found if run WSEC	ERV+AH	10	50	33%	295	87	4.38
	4	ASHRAE 62.2	HRV	35	35	100%	70	87	4.38
	5	ASHRAE 62.2	NHRV exh	0	35	100%	10	0	4.38
	6	ASHRAE 62.2 x 2	NHRV exh	0	70	100%	15	0	4.38
	7	ASHRAE 62.2	NHRV sup	35	0	100%	250	0	4.38
	8	WSEC 2006	NHRV exh	0	70	33%	15	0	4.38
	9	ASHRAE 62.2	HRV	35	35	100%	70	87	3.01
	10	ASHRAE 62.2	NHRV exh	0	35	100%	10	0	3.01
	11	ASHRAE 62.2 x 2	NHRV exh	0	70	100%	15	0	3.01
	12	ASHRAE 62.2	NHRV sup	35	0	100%	250	0	3.01
	13	WSEC 2006	NHRV exh	0	70	33%	15	0	3.01
2		Table	2 - Benchmark Assi	imptions for	r Ventilation	Scenarios			

			Site/	Site/ Source							
_	EGUSA		Source	w/PV		Space	Vent		PV	Net	
Run #	Scenario	ACH	(%)	(%)	Total	Heat	Fan	DHW	Gen	Use	Other
1	no ventilation	4.38	49.2	65.2	12035	4320	8	909	3790	8245	6114
2	Ventilation off	4.38	54.4	68.8	12027	4320	0	909	3790	8237	6114
3	WSEC 2006	4.38	49.5	64.5	12759	4306	745	909	3790	8969	6114
4	ASHRAE 62.2	4.38	51.3	66	12595	4347	537	909	3790	8805	6114
5	ASHRAE 62.2	4.38	50.5	65.9	12225	4441	77	909	3790	8435	6114
	ASHRAE 62.2										
6	x 2	4.38	52.1	66.4	12713	4764	244	909	3790	8923	6114
7	ASHRAE 62.2	4.38	46.7	61.3	13797	4139	1918	909	3790	10007	6114
8	WSEC 2006	4.38	52.3	67.2	12161	4374	80	909	3790	8371	6114
9	ASHRAE 62.2	3.01	52.6	67.3	12259	4016	533	909	3790	8469	6114
10	ASHRAE 62.2	3.01	53.9	68.5	11933	4149	77	909	3790	8143	6114
	ASHRAE 62.2										
11	x 2	3.01	53	67.3	12479	4529	243	909	3790	8689	6114
12	ASHRAE 62.2	3.01	47.8	62.5	13510	3860	1909	909	3790	9720	6114
13	WSEC 2006	3.01	53.5	68.4	11848	4063	79	909	3790	8058	6114
	Sunspace										
15	<u>Heated</u>	4.38	50.2	64.7	13027	5272	0	909	3790	9237	6114
16	No Sunspace	4.38	51.1	65.7	12676	4972	0	909	3790	8886	6114
18	GSHP COP 5	4.38	57.5	72.5	10710	3003	0	909	3790	6920	6114
20	Add 2.5 kW PV	4.38	57.5	81.3	10710	3003	0	909	6011	4699	6114
21	Cases - 9,18,20	3.01	55.4	79.8	11182	3022	80	909	6011	5171	3790
	Measured Data										
	(08-09)	4.38			12704	6786		1394	4917	7787	5021
2	Benchmark (2)	4.38	54.4	68.8	12027	4320		909	3790	8237	6114
	Measured vs.										-
	Benchmark (2)				677	2466		485	1127	-450	1093

67724664851127Table 3 – Benchmark (Energy Gauge USA) vs. measured

Measure	Minimum Code	Builder Standard	Zelonedo m	Total Costs Increment (*)	Amortized Annual Cost \$/month 7%, 30 yr)
Roof / Attic	R38 blown	R38 blown	R19 Icynene + R38 blown	2467 ft2 x \$0.19/ ft2 x 3 x1.1 = \$1547	\$10.82
Walls	R21 batt	R21 batt	R19 Icynene	2000 ft2 x \$0.19/ft2 x 3 x 1.1 = \$1254	\$8.78
Slab Floors	R10 below slab	R10 below slab	R15 below slab	2467 ft2 x \$0.50/ft2 x 1.1 = \$1357	\$9.50
Foundation	R10	R10	R10	No cost	\$0.00
Air Infiltration	7.0 ACH @50PA	5.0 – 7.0 ACH @50PA	4.0 ACH @50PA	\$300 testing \$200 caulking	\$3.50
Glazing: <i>U-</i> <i>Factor</i>	0.35 vinyl	0.33 wood	0.33 wood	No cost	\$0.00
Total Shell				\$4658	\$32.61
HVAC SYSTEM	Air source Heat Pump + DHW \$7.5K	Air Source Heat Pump + DHW \$7.5K	GSHP + Radiant \$27K	\$19,500	\$136.50
DHW:	80 Gal Electric	80 Gal Electric	GSHP	GSHP Included	\$0.00
Lighting	Incandescent w/CFL exterior	50% CFL bulbs	100% CFL bulbs & fixture	Zero with bulb + fixture rebate	\$0.00
Appliances:	NEACA	Energy Star	Energy Star	Zero after \$100 rebate	\$0.00
PV:	n/a	n/a	\$30 K	\$30K after rebates	\$210.00
Other	WH + spot Exhaust fans	WH + spot Exhaust fan	Central ERV (not used)	\$2500 fully ducted (not used/included)	\$0.00
Total Incremental Cost to Buyer				w/o PV = \$24,158 w/PV = \$54,158	w/o PV = \$169.10 w/PV = \$378.11

 Table 4 – Incremental Cost and Monthly Cash Flow

Figures

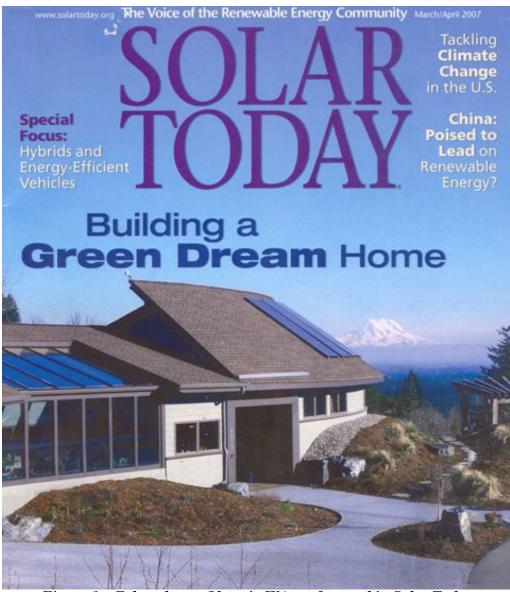


Figure 1 – Zelonedom – Olympia WA, as featured in Solar Today

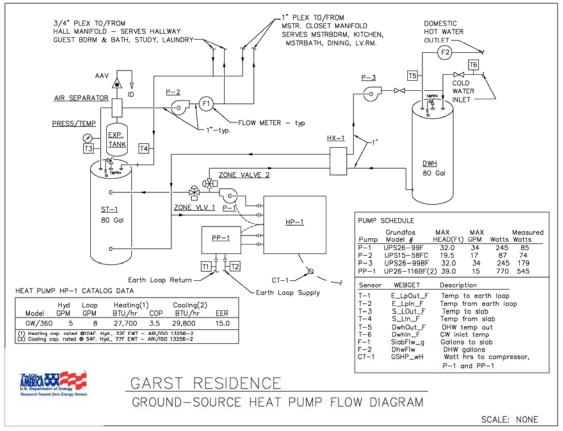
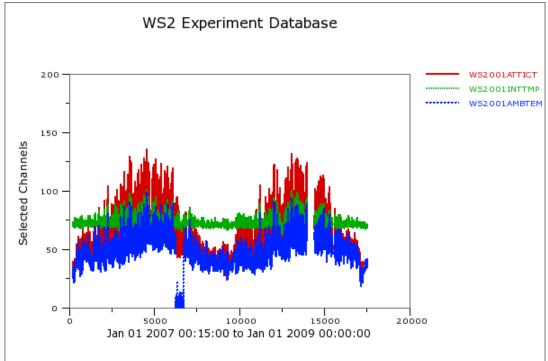



Figure 2 – Zelonedom Ground Source Heat Pump - Diagram, Specification & Monitoring Locations (see appendix for sequence of operation)

5 6

Figure 3 - Average Temperature for Vented Attic (red), House (green), and Ambient (blue)

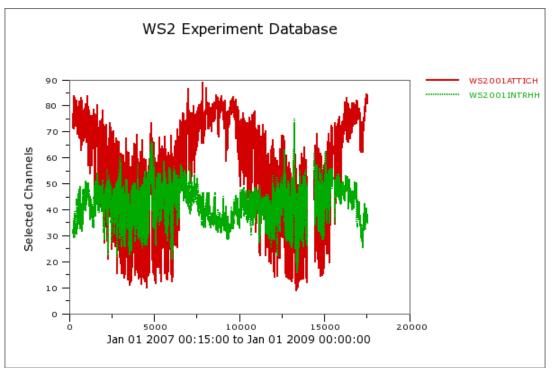



Figure 4 - Average Relative Humidity for Vented Attic (red) and House (green)

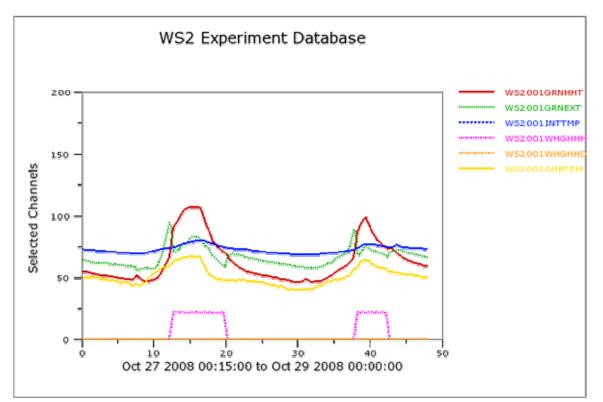


Figure 6 - Solar Greenhouse Operation on Two Sunny Fall Days

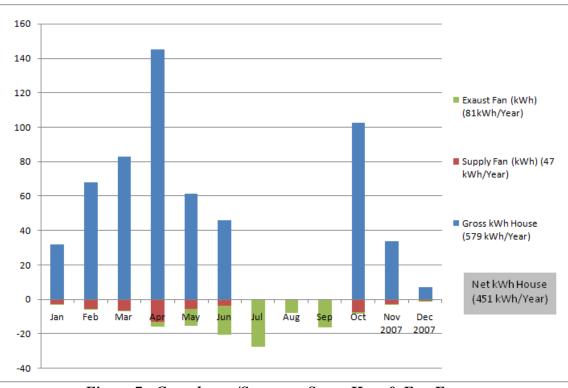


Figure 7 - Greenhouse/Sunspace Space Heat & Fan Energy:

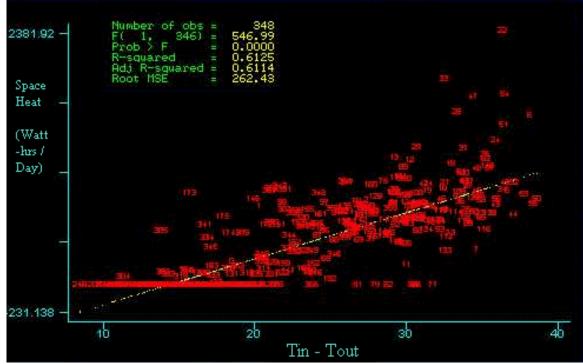
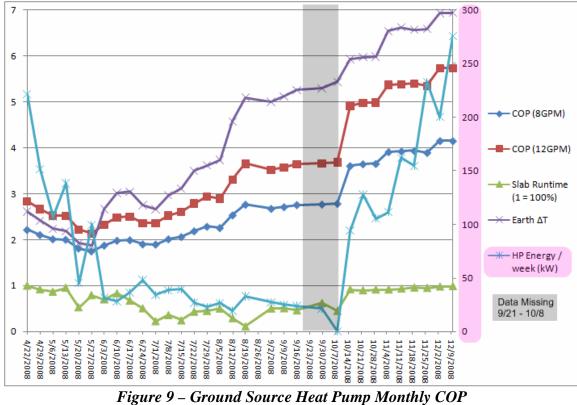



Figure 8 – Ground Source Heat Pump Space Heat vs. Delta Temperature (Slope = 147.4 btu/hr/F)

April 22 – December 9, 2008

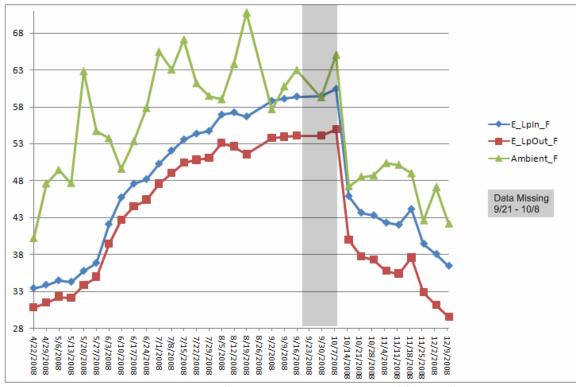
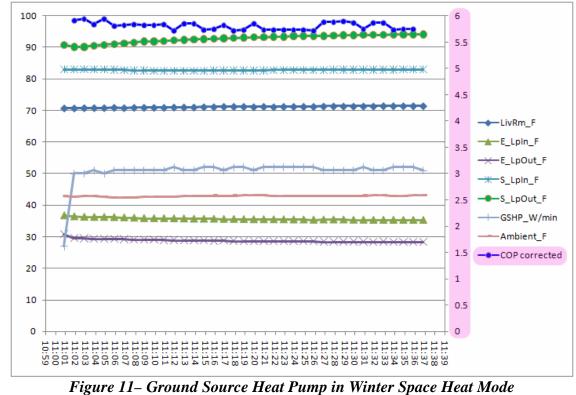
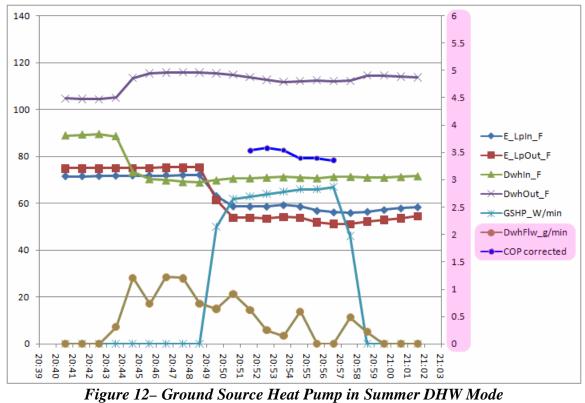




Figure 10 – Ground Source Heat Pump Monthly Conditions April 22 – December 9, 2008

Dec 4, 2008

August 14, 2008

1 Appendix A

2 **Evaluation of Project Stage-gate Criteria** 3 4 Within the Building America process, the Stagegate process is used to evaluate overall project 5 6 success, potential for continuation and refinements to research and development. 7 Within the process are "must meet" and "should meet" criteria. Each of these criteria are 8 9 examined relative to the Zelonedom residence in the marine climate of Olympia, WA (HDD 5710, CDD 341). 10 11 12 "Must Meet Criteria" 13 14 **Detailed Site and Source Energy Savings** 15 We used the EGUSA Version 2.8 software to evaluate the source energy savings of the net zero 16 energy home design. The software predicted a 54.5% source and site energy savings without PV 17 and a 65.8% site energy savings with PV versus the BA Benchmark for the installed measures. 18 Source savings without PV is 164.7 Mbtu without PV, and 208.2 Mbtu with PV (See Appendix 19 20 **G**.) 21 22 Characteristic **Annual Electricity Use (kWh)** Benchmark Total Energy Use 23 25182 Zelonedom: (simulation w/o PV) 12027 24 Zelonedom (monitored) 25 12704 Zelonedom (simulation w/PV) 26 7787 Zelonedom (monitored) 27 8237 28 29 Zelonedom Savings: Simulated w/o PV 13155 Zelonedom Savings: Simulated w/PV 16945 30 31 While there seems to be overall agreement, a number of factors need to be considered in single 32 home case study end-load predicted vs. measured comparisons: 33 34 35 • Net of PV power produced was roughly: 3800 kWh simulated; 4900 kWh measured with 2100 to home and 2800 to grid. 36 • Measured space heating was 6786 kWh while simulation estimated 4320. 37 • Measured DHW was 1394 kWh while simulation estimated 909 kWh. 38 • Measured "Other" non space heating/cooling and DHW use was 5021 while simulation 39 40 estimated 6114 kWh 41 42 **Quality Assurance** 43 44 Quality assurance was a key focus during design, installation and commissioning phases of the project. Both builder and owner effectively followed up on a number of unusual construction 45

46 and specification issues including Built Green, Energy Star NW, and BAIHP technical

1 assistance. Blower door tests and field testing during construction identified key air leakage and

2 thermal bypass issues. Commissioning of GSHP and ventilation systems should be a key

- 3 component to these QA practices.
- 4 5

Market Coverage

6

in an inter coverage

7 The home has received considerable press, and was featured in America Society of Solar Energy

8 (ASES) Solar Today magazine in April 2007. The property borders on state forest land at 500 ft 9 elevation.

9 10

11 Homeowner feedback on comfort, energy performance, and return on energy efficiency

12 investment has been positive overall. Based on this feedback, we believe that the home is a

13 potential model for other custom homes and is likely to meet the Market Coverage "Must Meet"

14 criteria. It should be pointed out, however, that this assessment is very homebuyer specific,

15 depending on homebuyer's environmental values and economic priorities.

16

17 Should Meet Criteria

18

19 Neutral Cost Target

20 The incremental cost of energy measures, HVAC upgrades, PV system and sunspace was

roughly \$260/ft2, or \$54,158 higher than more than a similar custom home built to the current

22 Washington State Energy Code. One problem the homeowner notes is that the appraisal had no

similar homes to compare with, so that the appraised value was roughly \$100,000 less than.

24

The PV system cost roughly \$27,000, the GSHP system \$19,500 more than a ducted air source

heat pump. The remaining energy efficiency measures cost roughly \$4700 more than minimum

code homes, (Table A.1). The initial cost of the PV system was \$5.97/watt. An additional 12

collectors will be installed in 2009, using the same inverters from the original system. These
 additional collectors are expected to cost \$8.00/watt (includes estimated labor cost). Without

utility rebates and tax credits the entire home envelope, HVAC system and PV was estimated to

31 be roughly \$54,158.

Measure	Minimum Code	Builder Standard	Zelonedom	Total Costs Increment (*)	Amortized Annual Cost \$/month 7%, 30 yr)
Roof / Attic	R38 blown	R38 blown	R19 Icynene + R38 blown	2467 ft2 x \$0.19/ ft2 x 3 x1.1 = \$1547	\$10.82
Walls	R21 batt	R21 batt	R19 Icynene	2000 ft2 x \$0.19/ft2 x 3 x 1.1 = \$1254	\$8.78
Slab Floors	R10 below	R10 below	R15 below slab	2467 ft2 x \$0.50/ft2 x 1.1	\$9.50

	slab	slab		= \$1357	
Foundation	R10	R10	R10	No cost	\$0.00
Air Infiltration	7.0 ACH @50PA	5.0 – 7.0 ACH @50PA	4.0 ACH @50PA	\$300 testing \$200 caulking	\$3.50
Glazing: U- Factor	0.35 vinyl	0.33 wood	0.33 wood	No cost	\$0.00
Total Shell				\$4658	\$32.61
HVAC SYSTEM	Air source Heat Pump + DHW \$7.5K	Air Source Heat Pump + DHW \$7.5K	GSHP + Radiant \$27K	\$19,500	\$136.50
DHW:	80 Gal Electric	80 Gal Electric	GSHP	GSHP Included	\$0.00
Lighting	Incandesc ent w/CFL exterior	50% CFL bulbs	100% CFL bulbs & fixture	Zero with bulb + fixture rebate	\$0.00
Appliances:	NEACA	Energy Star	Energy Star	Zero after \$100 rebate	\$0.00
PV:	n/a	n/a	\$30 K	\$30K after rebates	\$210.00
Other	WH + spot Exhaust fans	WH + spot Exhaust fan	Central ERV (not used)	\$2500 fully ducted (not used/included)	\$0.00
Total Incremental Cost to Buyer				w/o PV = \$24,158, w/PV = \$54,158	w/o PV = \$169.10 w/PV = \$378.11

¹ 2

Table A.1 Incremental Cost and Amortized Cost of Improvements

3 Assuming an incremental cost of \$4700 for envelope and \$19,500 HVAC upgrades and a 7%, 30

4 year mortgage the added monthly annual payments is approximately \$169 per month. The
5 benchmark analysis indicated a savings of 13,110 kWh per year using EGUSA or an estimated

6 utility saving of \$98 per month or \$1180 per year at current rates of \$0.09/kWh. The cost neutral

point utility cost would be roughly 12-13 cents per kWh. At current electric rates the

8 incremental cost for the envelope and HVAC efficiency upgrades would have to be \$14,000 or

roughly \$10,000 less. Cost neutral would have also been achieved with financing rates of

10 roughly 2.75%. Interest rate was 6.25% or \$148/month, so he is paying roughly \$50 more per

11 month than his current energy savings produce.

- 1 The owner is a financial analyst, and developed a simple model for the pay backs and cash flow
- 2 for the PV solar system under three scenarios: (see appendix D)
- 3 1) total system
- 4 2) the initial installation, and
- 5 3) a stand alone secondary install of 12 collectors (2.3 kW).
- 6

7 Using a mortgage of 6.25%, the homeowner estimates that the total system goes cash flow

8 negative in 2018. However, the homeowner notes that if he refinanced at 5.0% over a new 15

9 year mortgage with added cash taken out of equity for the additional PV the cash flow for

10 interest only is quite positive. The homeowner believes he has a good investment without

amortization at a 4% annual increase in utility rate and the return on cash of 3%. Had the

homeowner been able to purchase WA state built PV panels he would have received a 50 cent
 per kWh produced incentive (rather than the 15 cent per kWh he did receive) which would have

- 14 further extended his positive cash flow on the PV system. (WAC)
- 15

16 Marketability

17

18 The fact that this is a one of a kind custom home with very satisfied homeowner/builder,

19 indicates that others with similar environmental values and may do the same. However, it cannot

20 be ignored that the elevated price of the homes with their efficiency and renewable energy

features would remain a deterrent to those with less financial resources and environmental values.

23

24 Builder Commitment

25

The Builder, Polar Bear Construction, continues to build custom energy efficient homes with advanced framing and other efficiency measures in the Olympia community, well beyond local green building and Energy Home program levels. Both The homeowner and Polar bear

20 green building and Energy frome program revers. Both The noncowner and Four bear
 29 construction and have strengthened their commitment based on lessons learned from BAIHP
 30 experiences.

30 31

32 Gaps Analysis /Lessons Learned

32 33

35

34 A number of lessons were learned within the Zelonedom project:

- The GSHP system worked exceedingly well providing comfortable radiant floor space
 and ample DHW heating with low power. COP of overall GSHP performance is lowest
 in late spring and summer where the majority of heating is for DHW, and earth loop
 ground temperatures are lowest.
- 40

44

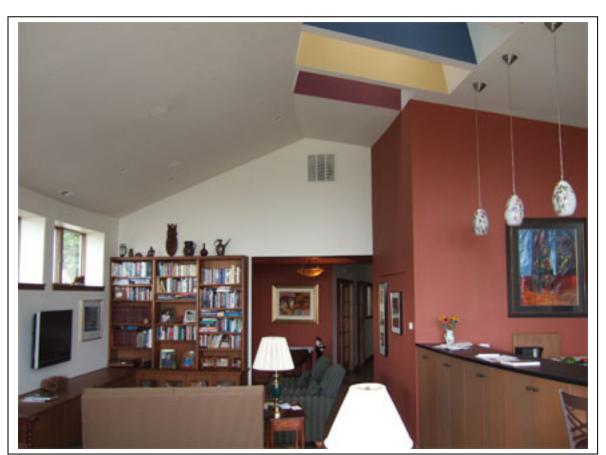
Solar PV system is performing better than expected in the first few years of monitoring.
 Continuing monitoring of the system is proposed to see if PV system performance
 reduces to rated output over time.

Solar sunspace system worked well to offset some space heating loads especially if the
 sunspace was not heated with the GSHP. Integration of the sunspace supply fan into the

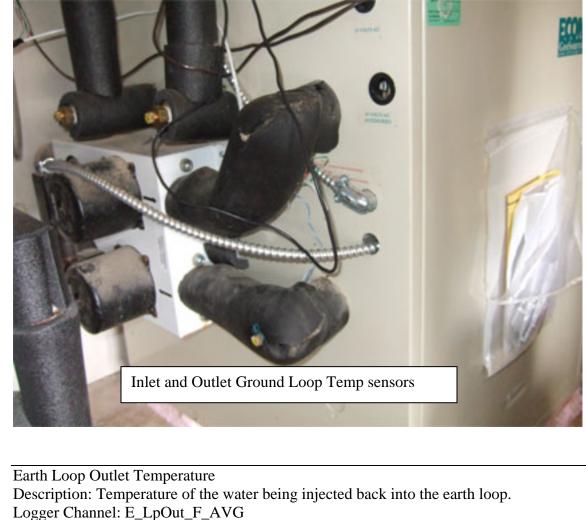
1 2		ventilation control strategy may be a viable option to pre-heat ventilation air.
2 3 4 5 6	•	Strategies that utilize summertime waste heat from sunspace for solar thermal DHW pre- heating are under investigation, as a way of reducing sunspace temperature and associated exhaust fan energy.
7 8 9 10	•	Occupants were able to use energy feedback to better understand the impact of lifestyle choices, and are currently exploring ways to reduce 86W standby energy use of media center, and understand impacts of wintertime sunspace heating.
11 12 13 14 15 16 17 18	•	Cash flow analysis of PV systems with \$2400 PSE initial rebate, \$750 /year 10 year production credit at \$0.15/kWh, \$2000 federal renewable tax credits and other incentives provide a positive cash flow for over ten years. Refinancing at lower interests rates, higher rebates and tax credits can further extend positive cash flow, especially if electricity rate increases continue and resale equity is considered. The homeowners are counting on higher fuel escalation and discount rates to address the negative cash flows in future years.
19 20	Identif	ied gaps within the research process:
21 22 23	•	Need low standby energy products for hardwired items in a net zero energy home (doorbells, garage door openers, appliances and HVAC electronics).
24 25 26 27	•	The use of tighter vinyl triple glazed windows instead of double paned wood windows and use of exterior R5-10 foam sheathing on above grade walls in lieu of expensive spray foam in wall cavities should be considered.
28 29 30 31 32	•	Additional engineering optimization, GSHP commissioning and use of multi-speed GSHP system pump(s) may improve GSHP COP. However, since the system is not providing AC the pump energy penalty is not as large. Multi speed pump control may be warranted for future projects to reduce this consumption.
33 34 35	•	Solutions to eliminate problems identified associated with interaction of the net metering of PV system and the TED feedback device are underway.
36 37 38 39 40	•	The ventilation system was not well designed, installed or operated, and other, more effective systems are available, especially if the home had been built with a tighter envelope. Just because cavity foam insulation was used doesn't make the home tight. Attention to air leakage paths (windows in particular) is critical.
41 42	•	The homeowner chose to have large window areas, increasing home space heat use, first cost and air leakage but also provided enhanced views and improved day-lighting.
43 44 45 46	•	Advanced construction techniques in the project were successful at reducing heating loads. Investigations into higher than predicted space and DHW heating are also underway.

1 2			Appendix B
3			Channel Map & Sensor Descriptions
4 5	WE	BGET Chann	el Map:
6		annelMap	
	1	Array	
	2	Year	
		Day Timo	
		Time BATVOL	Lagger Batteny Voltage
		ATTICT	Logger Battery Voltage Attic Temperature (F):
	0	ATTICT	Attic Relative Humidity
	7	ATTICH	(%RH):
	'	ATTION	Green House to House
	8	GRNHHT	Temperature (F)
	Ū	0	Green House to House
	9	GRNHHH	Relative Humidity
			Greenhouse Exhaust to
	10	GRNEXT	Outside Temperature
			Greenhouse Exhaust to
	11	GRNEXH	Outside Relative Humidity
			Main Living Area
	12	INTTMP	Temperature
			Main Living Area Relative
	13	INTRHH	Humidity
			Supply Air from ERV
		ERVSUT	
		ERVSUH	Supply Air from ERV Humidity
	10	ERLINT	Earth Loop Inlet Temperature
	17	ERLOUT	Earth Loop Outlet Temperature
	18	SLLINT	Slab Loop Inlet Temperature
	10	OLLINI	Slab Loop Outlet
	19	SLLOUT	Temperature
			Hot Water Tank Inlet
	20	DHWINT	Temperature
			Hot water tank Outlet
	21	DHWOUT	Temperature
			Watt-hours Greenhouse Heat
	22	WHGHHH	to House
			Watt-hours Greenhouse Heat
	23	WHGHHO	to Outside
			Watt-hours Heat Pump
		WHGHHP	Compressor
	25	WHPAN1	Watt-hours Panel 1A

	26	WHERVA	
	27	WHPAN2	Watt-hours Panel 1B Watt-hours PV Inverter
	28	WHINVO	Output Watt-hours Hot Water Pump
	29 30	WHDHWP FLSLAB	(not working) Slab Loop Flow Rate (gallons) Hot Water Tank Flow Rate
	32 33 34	FLODHW AMBTEM AMBRHH PYWAVG PYKJTO	(Gallons) Ambient Temperature Ambient Relative Humidity Flux Density Total Flux (ignore) DHW Pump run percent
1	46	PUMPON	(Inverted 1=Off, 0=On)
1 2			
3 4	Mon	itoring System	m Sensor Descriptions:
5 6	Attic	Temperature	(F)·
0 7		-	erature in the attic
8		ger Channel: A	
9		Get Channel:	
10 11		or Location: I d Data: 1/11/2	n attic halfway between ceiling and roof joists. 007 - Current
12	0000	<i>a Data</i> . 1/11/2	
13 14			
14			
16 17			
18 19	Desc	ription: Humi	nidity (%RH): dity in the attic
20 21		ger Channel: A Get Channel:	Attic_RH_AVG 7 (ATTICH)
21			n attic halfway between ceiling and roof joists.
23			007 - Current
24 25			
25 26			
27			
28 29	Gree	n House to Ho	ouse Temperature (F)
29 30			erature in the ductwork between the greenhouse and the main living space
21			Amulau E AVG

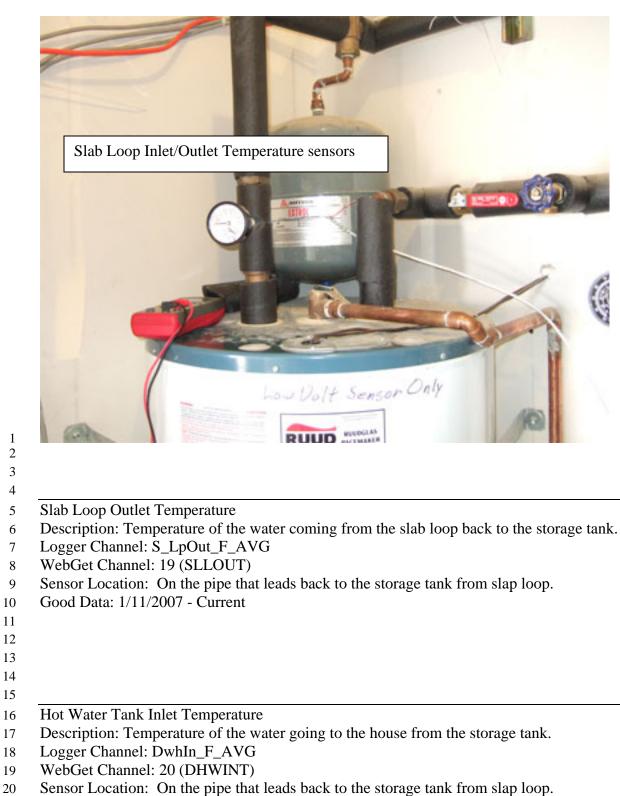

31 Logger Channel: GrnHsH_F_AVG

- 1 WebGet Channel: 8 (GRNHHT)
- 2 Sensor Location: In the exhaust vent in the green house leading to the main living space.
- 3 Good Data: 1/11/2007 Current



- 23 Logger Channel: GrnHsO_F_AVG
- 24 WebGet Channel: 10 (GRNEXT)

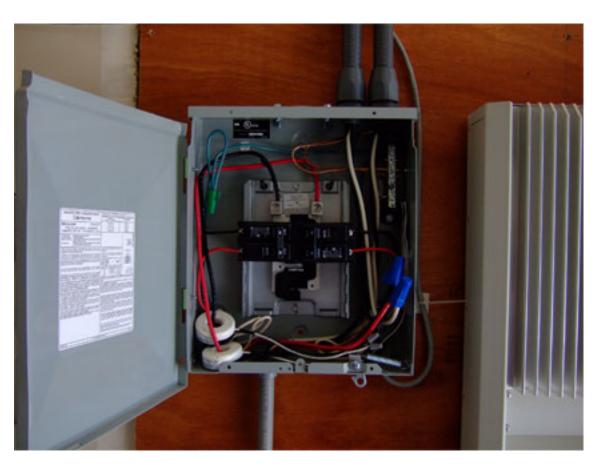
- 1 Sensor Location: : In the exhaust vent in the green house leading to exterior of the house.
- 2 Good Data: 1/11/2007 Current
- 3
- 4
- 5
- 6
- 7 Greenhouse Exhaust to Outside Relative Humidity
- 8 Description: Humidity in the ductwork between the greenhouse and the exterior
- 9 Logger Channel: GrnHsO_RH_AVG
- 10 WebGet Channel: 11 (GRNEXH)
- 11 Sensor Location: : In the exhaust vent in the green house leading to exterior of the house.
- 12 Good Data: 1/11/2007 Current
- 13
- 14
- 15
- 16
- 17 Main Living Area Temperature
- 18 Description: Temperature in the ductwork between the main living space and the ERV system.
- 19 Logger Channel: LivRm_F_AVG
- 20 WebGet Channel: 12 (INTTMP)
- 21 Sensor Location: : In the exhaust vent in the living space leading to the ERV system.
- 22 Good Data: 1/11/2007 Current
- 23 24


]	Main Living Area Relative Humidity Description: Humidity in the ductwork between the main living space and the ERV system. Logger Channel: LivRm_RH_AVG WebGet Channel: 13 (INTRHH) Sensor Location: : In the exhaust vent in the living space leading to the ERV system.
	Good Data: 1/11/2007 - Current
	Supply Air from ERV Temperature
]	Description: Temperature in the ductwork between the ERV system and the main living space Logger Channel: ERV_F_AVG WebGet Channel: 14 (ERVSUT)
	Sensor Location: : In the ductwork to the living space from the ERV system. Good Data: 1/11/2007 - Current
]	Supply Air from ERV Humidity Description: Temperature in the ductwork between the ERV system and the main living space Logger Channel: ERV_RH_AVG
	WebGet Channel: 15 (ERVSUH) Sensor Location: : In the ductwork to the living space from the ERV system. Good Data: 1/11/2007 - Current
]	Earth Loop Inlet Temperature Description: Temperature of the water coming from the earth loop. Logger Channel: E_LpIn_F_AVG
	WebGet Channel: 16 (ERLINT) Sensor Location: On the pipe leading into the heat pump from the ground loop. Good Data: 1/11/2007 - Current

- 6 Logger Channel: E_LpOut_F_AV7 WebGet Channel: 17 (ERLOUT)
- 8 Sensor Location: On the pipe leading back to the ground loop from the heat pump.
- 9 Good Data: 1/11/2007 -
 - 03/23/2007 02:15 PM Current
- 10 11

4

- 12
- 13
- 14
- 15
- 16 Slab Loop Inlet Temperature
- 17 Description: Temperature of the water going to the radiant floor slab loop.
- 18 Logger Channel: S_LpIn_F_AVG
- 19 WebGet Channel: 18 (SLLINT)
- 20 Sensor Location: On the pipe that leads to the slab loop from the storage tank.
- 21 Good Data: 1/11/2007 Current
- 22


- 21 Good Data: 1/11/2007 Current
- 22
- 23

- 4 Hot water tank Outlet Temperature
- 5 Description: Temperature of the cold water going into the storage tank.
- 6 Logger Channel: DwhOut_F_AVG
- 7 WebGet Channel: 21 (DHWOUT)
- 8 Sensor Location: On the cold water pipe that goes into the storage tank.
- 9 Good Data: 1/11/2007 Current
- 10
- 11
- 12
- 13
- 14 Watt-hours Greenhouse Heat to House

1	Description: Energy use by the fan that moves hot air from the green house to the living area.
2	Fan runs when a thermostat is set to move warm air into the house. This blows warm air over
3	the cement slab in the foyer.
4	Logger Channel: GrnHsH_wH_TOT
5	WebGet Channel: 22 (WHGHHH)
6	Sensor Location: On the wire in the fan's junction box.
7	Good Data: 1/11/2007 - Current
8	
9	
10	
11	
12	Watt-hours Greenhouse Heat to Outside
13	Description: Energy use by the fan that moves hot air from the green house to the exterior. This
14	keeps the greenhouse from overheating.
15	Logger Channel: GrnHsO_wH_TOT
16	WebGet Channel: 23 (WHGHHO)
17	Sensor Location: Located in the Attic, on the wire in the fan's junction box.
18	Sensor Docation Docated in the Fride, on the whe in the full s Junction com
19	
20	
21	
22	Watt-hours Heat Pump Compressor
22	Description: Energy use by the heat pump.
23	Logger Channel: GSHP_wH_TOT
25	WebGet Channel: 24 (WHGHHP)
26	Sensor Location: In panel A on both of the wires.
20	Good Data: 03/21/2007 02:00 PM - Current
28	Good Data. 03/21/2007 02:00 1 M1 - Current
28 29	
30	
31	Watt-hours Panel 1A
31 32	Description: Energy use by the Panel A (including the heat pump and the ERV).
-	Logger Channel: PnlA_wH_TOT
33 24	WebGet Channel: 25 (WHPAN1)
34 25	
35	Sensor Location: In panel A. Good Data: 03/23/2007 03:00 PM - Current
36	Good Data: 05/25/2007 05:00 PM - Current
37	
38	
39	
40	Watt-hours ERV / Air Handler
41	Description: Energy use by the ERV
42	Logger Channel: ERV_wH_TOT
43	WebGet Channel: 26 (WHERVA)
44	Sensor Location: In panel A on both phase wires
45	Good Data: 03/30/2007 03:45 PM - Current
46	

1	
2	
3	
4	Watt-hours Panel 1B
5	Description: Energy use by panel B loads
6	Logger Channel: PnlB_wH_TOT
7	WebGet Channel: 27 (WHPAN2)
8	Sensor Location: In panel B
9	Good Data: 03/23/2007 02:30 PM - Current
10	
11	
12	
13	
14	
15	Watt-hours PV Inverter Output
16	Description: Energy use by panel B loads
17	Logger Channel: Solar_wH_TOT
18	WebGet Channel: 28 (WHINVO)
19	Sensor Location: In breaker box that back feeds on panel B (2 phase)
20	Good Data: 03/21/2007 01:30 PM - 06/21/2007 11:30 AM
21	10/10/2007 07:30 AM - Current
22	
23	

- 1
- 2 Slab Loop Flow Rate
- 3 Description: Flow in the slab in gallons
- 4 Logger Channel: SlabFlw_g_TOT
- 5 WebGet Channel: 29 (FLSLAB)
- 6 Sensor Location:
- 7

- Hot Water Tank Flow Rate (Gallons)
 - 12 Description: Flow of domestic hot water in gallons
 - 13 Logger Channel: DwhFlw_g_TOT
 - 14 WebGet Channel: 30 (FLODHW)
 - 15 Sensor Location:
 - 16
- 17
- 18
- 19
- 20 Ambient Temperature
- 21 Description: Temperature outside the house
- 22 Logger Channel: Out_F_AVG
- 23 WebGet Channel: 31 (AMBTEM)
- 24 Sensor Location: sensor located on roof.

1	Good Data: 1/11/2007 - Current
2	
3	
4	
5	
6	
7	
8	Ambient Relative Humidity
9	Description: RH outside the house
10	Logger Channel: Out_RH
11	WebGet Channel: 32 (AMBRHH) Sensor Location: sensor located on roof.
12	Good Data: 1/11/2007 - Current
13 14	Good Data. 1/11/2007 - Current
14	
16	
17	
18	Flux Density
19	Description: Solar radiation
20	Logger Channel: OutSlr_W_AVG
21	WebGet Channel: 33 (PYWAVG)
22	Sensor Location: sensor located on roof.
23	
24	06/22/2007 04:00 AM - 09/18/2007 11:30 PM
25	10/10/2007 06:15 AM - Current
26	
27	
28	Total Flux (not important)
29	Description: Solar radiation accumulation
30	Logger Channel: OutSlr_kJ_TOT
31	WebGet Channel: 34 (PYKJTO)
32 33	Sensor Location: sensor located on roof.

- 34 35

1	Appendix C
2	Ground Source Heat Pump COP Calculation Method
3	
4	A channel data acquisition system takes measurements every 15 seconds, averages them over 15
5	minutes and saves them to FSEC's WEBGET database. WEBGET is used to evaluate overall
6	home performance and PV production. For the analysis of the GSHP COP, one minute data was
7	collected from May to November 2009 data into a spreadsheet which was then used to analysis
8	GSHP performance and determine in-situ COP.
9 10	The COP of a GSHP is defined as:
10	
11	$\frac{Q_{earth} + Q_{compressor}}{Q_{compressor} + Q_{pumps}}$
	$Q_{compressor} + Q_{pumps}$
12	O must calculated by doing a sup time measurement of the flow rate of the ground loop, measuring the
13 14	Q _{earth} was calculated by doing a one-time measurement of the flow rate of the ground loop, measuring the temperature difference between inlet and outlet temperatures and adjusting for the thermal capacity of the
15	20% methanol mixture in the earth loop, which was calculated at 0.921 BTU/lb x °F.
16	
17	Qearth (BTU/hr) = m x Cp x Cv x (Tin – Tout)
18	
19 20	Where m is the mass flow rate of the fluid in lb/hr.; so m = 11.8 gpm x 8.33 lbm/gal = 98.3
20 21	Energy to the compressor, earth loop and hydronic system pumps is monitored by the data logger.
22	Energy to the auxiliary pumps (space heat and domestic hot water circulation pumps) was measured (one
23	time) and added to the energy measured by the logger for periods when they are running.
24	
25	Flow rate in the earth loop was calculated thus:
26	
27	$Q = Cv\sqrt{H}$
28	Where O flow rate in some
29 30	Where Q=flow rate in gpm Cv = valve factor, gpm flow that causes a 1 psi pressure drop
31	H=heat in psi
32	
33	The Manufacturer lists flow vs. head for the earth loop heat exchanger. At the design flow rate of 8 gpm
34	the pressure drop is 5.5 psi, plugging these values into the equation above yields a Cv of 3.41. Using this
35	value of Cv, we can calculate the flow at any head - in this case $Q = 3.41x\sqrt{12} = 11.8$ gpm.
36	
37	The measured flow then is nearly 50% higher than the factory-recommended flow rate of 8
38	GPM. The effect is to increase heat output by approximately 8% while increasing the energy use
39	(in the compressor only) by 2%. Investigations are underway to further evaluate earth loop flow
40	rates on overall system efficiency.
41	
42	Other Notes:
43 44	1) The estimate of COP was done for each GSHP cycle. To help evaluate the steady-state
44 45	performance and the first two minutes and last minute of cycle data was filtered out of the
45 46	calculation estimate.

- 1
- 2 2) Adjustments to COP were also methanol/water mixture in the earth loop as follows: The fluid
- ³ used in the ground loop consists of a mixture of 20% methanol and 80% water. Methanol has a
- 4 Specific Gravity (at 20 deg. F) of .7915 and a heat capacity of 0.604 BTU/(deg.F x Lb); water
- 5 has a specific heat of 1 BTU/(deg.F x lb) and a specific gravity of 1.0. For a 20% mixture of
- 6 methanol and water, the mixture will contain 0.2 parts of methanol and .8 parts of water. The
- specific gravity of the mixture is then $0.2 \ge 0.7915 + 0.8 \ge 1.0 = 0.9582$. The specific heat of the
- 8 mixture is $0.2 \ge 604 + 0.8 \ge 1.0 = 0.1208 + 0.8 \ge 1 = 0.921$.
- 9 Calculated the specific heat = .92 is multiplied by 8.33 #/gal and by the delta t of earth loop.
- 10
- 11 3) The correction factor for measurements of various fluid densities the formula is the square
- 12 root of 1/specific gravity times the gauge reading. A specific gravity of .9581 indicates a
- 13 correction factor of 1.021 a 2% increase in actual flow.

1	Appendix D
2 3	Ground Source Heat Pump Sequence of Operation
4	Ground Source Hour Famp Sequence of Speration
5	SEQUENCE OF OPERATIONS
6	HVAC SYSTEMS SERVING THE ZELONEDOM RESIDENCE
7	
8	General
9	
10 11	The system provides ventilation and space heat for several radiant floor zones and domestic hot water (DHW). System components include an Econar ground-source heat pump with the factory
11	pump pack (two pumps) serving the earth loop, a main circulation pump (P-1), Space heat pump
12	P-2, domestic water heater pump (P-3), two zone valves, A system hot water storage tank, a
14	domestic hot water storage tank and two Tekmar controllers, a Tekmar 150 for domestic hot
15	water control and a Tekmar 260 with outdoor reset.
16	
17	Heat Pump
18	
19	The heat pump consists of an Econar two-ton water to water heat pump. The heat pump is a
20	water to water unit with two "source" circulating pumps which move water through the earth
21	loop and a "load" circulating pump which circulates heating water through either the domestic
22	water heat exchanger or the heating water storage tank (ST-1), depending on the position of the
23	system zone valves.
24 25	The heat pump is started and stopped by end switches on the two zone valves. The zone valves
25 26	are energized and de-energized by the Tekmar controllers. Upon a call for heat from the space
27	heat sensor or the domestic hot water storage tank sensor, circulating pump P-1 and the two
28	pumps serving the earth loop (Pump Pack-1) are energized and run until the call for heat is
29	satisfied. If both DHW and space heat systems are simultaneously calling for heat, the domestic
30	water heater has priority and runs until its load is satisfied before providing for the space heat
31	load. When changing from domestic water heating mode to space heating mode, the heat pump
32	shuts down momentarily until ZV-1 opens fully and its end switch energizes the heat pump.
33	
34	Domestic Water Heating
35	
36	When the temperature in the domestic hot water storage tank (DHWST) drops 2°F below the set

When the temperature in the domestic hot water storage tank (DHWST) drops $2^{\circ}F$ below the set point (adjustable and currently set at $117^{\circ}F - 120^{\circ}F$) zone valve - 1 (ZV-1) is closed, ZV-2 opens and pump P-3 is energized. When Z-2 is fully open, an end switch starts the heat pump if it is not already running. When the temperature in the DHWST rises to $2^{\circ}F$ above the set point, the call for domestic hot water heating is satisfied, ZV-2 closes, ZV-1 opens and, if the space heat

- 41 zone is satisfied, the heart pump and all hydronic pumps shut down.

43 Space Heating

The Tekmar 260 controller provides space heat control functionality for the heat pump. The controller senses outdoor temperature, indoor temperature and the heating water storage tank

47 (ST-1) temperature and uses this information to set the temperature of the water supplied to the

1 radiant floor. As the outside temperature falls, the controller increases the heating water

- 2 temperature, raising the temperature of the water in ST-1 and the water used in heating the floor
- 3 loop. The ratio between the rise in the heating water temperature as the outdoor temperature
- 4 falls is called the reset ratio. The Zelonedom system is currently setup with an indoor
- 5 temperature of $68^{\circ}F 70^{\circ}F$ and a reset ratio of 1:1 i.e., as the outside temperature rises from
- $6 \quad 20^{\circ}$ F to 60° F, the heating water temperature drops from 120° F to 60° F.
- 7

8 The heating control system is actuated by the indoor sensor connected to the Tekmar 260 and

9 located in the main living area (which includes the open living area, master closet, laundry, and

10 bathrooms). Heating sub-zones are provided for the office, guest bedroom, sunroom, reading

- 11 room and master bedroom. Each area has a thermostat connected to an actuator on one of the 12 supply heating manifolds. The actuator shuts down heating water flow heat to its sub-zone when
- supply heating manifolds. The actuator shuts down heating water flow heat to its sub-zone when a call for heat in the area is satisfied. A summer lock-out circuit is provided to shutdown the
- hvdronic pump whenever the outside temperatures exceed 70°F. (adjustable).
- 15

16 Radiant Floor Loop

17

18 The radiant floor is a 4 inch concrete slab with ³/₄" PEX tubing on 9 inch centers except for the

edges where the first 3-4 passes are on 6 inch centers. Bathrooms also have tubing installed on

6" centers including the areas under the bathtub and shower. Tubing was not placed under the pantry or lower cabinets.

21 22

Each heating circuit in the floor is connected to a heating water supply or return manifold. There are two sets of manifolds – one in the master bedroom closet, the other in the hall closet. Each manifold has a shut-off valve for each supply and return circuit and on the supply manifold, a

26 flow meter and balancing valve for each circuit.

27

28 Ground Loop Heat Exchanger

29

The ground loop heat exchanger consists of 1,800 ft. of buried ³/₄" polyethylene piping (PEX) in a 300 ft long by 5 ft. deep trench on the east side of the building. Two additional passes of PEX are run on the south side of the house. These loops terminate in the garage near the heat pump.

33

34 Ventilation System (not operating)

35

The ventilation system consists of a RheemTM 600 CFM air handling unit with a Honeywell 36 HEPA filter and a 200 CFM heat recovery ventilator (HRV). The air handler distributes filtered 37 air throughout the house via 8 diffusers and two return air grilles. The HRV is connected to the 38 air handler return air ductwork with the exhaust air connection upstream of the outside air outlet 39 The HRV flow is set (via a fan speed controller) at slightly over 1/6 of the house's ACH rate. A 40 de-humidistat is located near the entry and is wired to boost the fans speed to high speed if the 41 humidity in the area exceeds the set point. A second switch shuts down the heat exchanger's 42 heat-transfer wheel when the temperatures exceed 50-70 °F. 43

1 2	Appendix E
3	Cost-effectiveness spreadsheet (attached electronically)
4 5	Appendix F
6	Ground Source Heat Pump (WSU will deliver 344MB spreadsheet file on CD)
7	
8	See link: < <u>\\dfsc0\shared\IND\Build America\Build</u>
9	<u>America\Garst\COPCalc20090112_ToMike.xls</u> >
10	
11	

Appendix G

Building America Site and Source Savings Building America

Site Energy Summary 2008 Project Title:

Garst final 2

Climate: WA_OLYMP

2/10/2009

Sam & Christine Garst 6015 Maranatha Lane Tumwater, WA 98512-

End Use: Benchmark Prototype Saving kWh Therms Gal MBTU Cost kWh Therms Gal MBTU Cost Si Total Space Heating: 44.462 14,740 66.8 38.436 11.693 Heating: 6.026 Heating Fan: 3.047 0.270 85.2 Total Space Cooling: 1.825 Cooling 0.061 Cooling Fan: 0.273 Total Hot Water: 77.6 13.867 3.101 Lighting Subtotal: 9.496 4.924 48.1 7.838 3.267 58.3 Wired Lighting: Plug Lighting: 1.657 1.657 0.0 Appliance Subtotal: 19.653 18.002 8.4 Refrigerator: 1.638 28.3 2.283 ClothesWasher: 0.358 0.235 34.3 2.849 2.051 28.0 ClothesDryer: Dishwasher: 0.703 0.618 12.1 Cooking: 2.064 2.064 0.0 0.0 Other Appls: 11.396 11.396 Ceiling Fan: 0.000 0.000 0.682 0.000 100.0 OAVentilation Fan: 89.985 41.037 Total: 54.4 -303 Generation(PV): -3790 -12.93189.985 68.8 Net: 28.105

EnergyGauge USA 2.8

Building America

Climate: W/ 2/16/2009

Source Energy Summary 2008 Project Title: Garst final 2

Sam & Christine Garst 6015 Maranatha Lane Tumwater, WA 98512-

1

End Use:			Be	enchmark			Pro	totype		
	kWh	Therms	Gal	MBTU	Cost	kWh	Therms	Gal	MBTU	Cost
Total Space Heating:	13031	0	0	149.614	1042	4320	0	0	49.600	345
Heating:	11265	0	0	129.338	901	3427	0	0	39.347	274
Heating Fan:	1766	0	0	20.276	141	893	0	0	10.253	71
Total Space Cooling:	535	0	0	6.143	42	79	0	0	0.907	6
Cooling:	455	0	0	5	36	61	0	0	1	5
Cooling Fan:	80	0	0	0.919	6	18	0	0	0.207	1
Total Hot Water:	4064	0	0	46.661	325	909	0	0	10.435	73
Lighting Subtotal:	2783	0	0	31.953	223	1443	0	0	16.569	115
Wired Lighting:	2297	0	0	26.376	184	957	0	0	10.993	77
Plug Lighting:	486	0	0	5.577	39	486	0	0	5.577	39
Appliance Subtotal:	5760	0	0	66.134	460	5276	0	0	60.577	421
Refrigerator:	669	0	0	7.681	54	480	0	0	5.511	38
ClothesWasher:	105	0	0	1.206	8	69	0	0	0.792	6
ClothesDryer:	835	0	0	9.587	67	601	0	0	6.900	48
Dishwasher:	206	0	0	2.365	16	181	0	0	2.078	14
Cooking:	605	0	0	6.946	48	605	0	0	6.946	48
Other Appls:	3340	0	0	38.349	267	3340	0	0	38.349	267
Ceiling Fan:	0	0	0	0.000	0	0	0	0	0.000	0
OAVentilation Fan:	200	0	0	2.296	16	0	0	0	0.000	0
Total:	26373	0	0	302.800	2108	12027	0	0	138.088	961
Generation(PV):	0	0	0	0	0	-3790	0	0	-43.514	-303
Net:	26373	0	0	302.800	2108	8237	0	0	94.573	658
EnergyGauge USA 2.8										

3 4

2

5

6 Building America Benchmark Analysis Site and Source Savings ENB Files

Appendix H

7 (attached electronically)

8

9

10