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Abstract 
 
FSEC has developed capabilities for modelers to more accurately and more readily 
perform Building America energy analysis through three efforts: 

• Developing a software toolkit for creating the Building America Benchmark 
home for use by software programmers 

• Developing a simple hot water distribution algorithm for  potential inclusion in 
future Building America efforts 

• Simulating different mechanical ventilation options for homes. 
 
 
Executive Summary 
 
The Building America Benchmarking process is time consuming.  One must first enter 
the parameters of the prototype home design into the Building America Spreadsheet tool1 
to create the parameters of the Building America benchmark home and then use detailed 
software products to simulate both the benchmark home and the prototype home and then 
enter the results from these simulations into the spreadsheet to determine the resulting % 
improvement for the prototype.  
 
To reduce this effort, FSEC has created a BA Toolkit that allows programmers to 
incorporate calls to functions and procedures that produce the Building America 
Benchmark characteristics. This will enable programmers to more easily incorporate 
Benchmark analysis into their software. The toolkit has been tested against the 
Department of Energy developed Building America Spreadsheet Tool and found to 
produce the same results. 
 
The Benchmarking process goes into great detail to determine hot water use for the 
benchmark and the prototype homes. However, the benchmark process has not included 
hot water distribution effects, which can be larger than many of the water use differences 
currently painstakingly calculated. FSEC has developed a simple routine and verified it 
against measured data as a method to simulate distribution effects to a reasonable degree 
of accuracy. It shows that typical losses in a Miami home may represent an increase of 
2.4 % in hot water energy use and also a slight increase in cooling energy. This routine 
can be incorporated into or run separately from other software should the Building 
America program decide to include this element.  
 
 
FSEC has also accomplished another enhancement for Building America teams that 
facilitates extraction of ventilation fan energy use from DOE reports. As part of this 
effort, but outside of this funding, FSEC also added a capability within EnergyGauge 
USA to simulate mechanical air handler ventilation with a controller that closes a damper 
after a certain amount of runtime or turn on the blower to assure a minimum amount of 
runtime, or both. This report presents simulation results for controlling mechanical 
                                                 
1 Building America Analysis Spreadsheet, dated 05.03/06 found online at 

http://www.eere.energy.gov/buildings/building_america/pa_resources.html 



 2

ventilation via nine strategies. Fresh air provided by systems as well as energy use due to 
ventilation air flow and fan energy consumption can vary significantly depending 
oncontrol characteristics.  Simple runtime vent systems may only bring in air 20% to 
25% of the time on an annual average basis compared to continuous vent systems and if 
designed for small quantities of air will likely not provide much more outdoor air than 
simple infiltration in the wintertime when the natural driving forces are large. Ensuring 
that a runtime vent system operates 25% of every hour results in increased energy use 
due to increased fan use (4% and 13% of heating and cooling energy, respectively) in the 
modeled St. Louis example used in this study. 
 
In summary, FSEC has added capabilities for modelers to more accurately and more 
readily perform energy analysis for Building America homes. These algorithms are listed 
in the report text and the appendix.  Please contact the first author Rob Vieira 
(robin@fsec.ucf.edu) to obtain these algorithms in computer friendly format. 
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1.0 Introduction 
 
The Building America program has developed their unique energy analysis procedure. 
This procedure is different from the HERS and Energy Star procedures and different 
from the IECC code. To help teams accomplish the energy analysis, the National 
Renewable Energy Laboratory (NREL) has developed a spreadsheet that allows users to 
enter prototype characteristics and obtain inputs to building simulation programs for 
software tools. This spreadsheet has been improved over time and is a powerful tool. 
However, there are still some potential problems with the process. Each user has to take 
the outputs and enter them into a building simulation tool. This is an additional process 
and requires instructions for each type of software tool used. Therefore, there is a 
reasonable chance for error or at least inconsistency even if the same spreadsheet and 
building simulation programs are implemented by two users. In an effort to improve 
consistency and accuracy, FSEC set out to develop a stand-alone benchmark tool that will 
allow programmers to obtain the benchmark home characteristics and incorporate them 
into their software. FSEC also set out to improve mechanical ventilation modeling 
options and hot water distribution analysis. 
 
2.0 BA Benchmark ToolKit algorithms 
 
After considering adding a number of features, and starting with large building decks and 
other options, the FSEC team decided to simply code the spreadsheet benchmark 
information with a few choices as to how to obtain the outputs. This method was chosen 
as it required the smallest number of inputs and as such may be more readily used. The 
program includes flexibility that will allow for calling each component routine so if 
someone is experimenting with new benchmarks or building codes, they could choose to 
use portions of the toolkit and program some new portions. 
 
The BA benchmark algorithms are being delivered with a COM object2 for easy access 
within most software tools. Four units were coded to produce the BA benchmark 
building/spreadsheet procedures – one  for the envelope, one for the HVAC and water 
heating equipment, one for the appliances and one with some common math-type 
routines.  This section of the report provides an overview of each program unit developed 
and assumes the reader has an understanding of the benchmark building procedure. 
Detailed input and output descriptions are located in Appendix A. For full understanding 
of the Building America Benchmark requirements the reader is encouraged to view the 
documents at: 
http://www.eere.energy.gov/buildings/building_america/pa_resources.html 
 
2.1 Envelope 
 

                                                 
2 Component Object Model (COM) is a Microsoft platform for software components introduced by 
Microsoft in 1993. It is used to enable interprocess communication and dynamic object creation in any 
programming language that supports the technology 
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Programmers may call a master envelope procedure that calls each envelope component 
routine and returns all of the benchmark home envelope characteristics for a given 
prototype home. This routine requires just ten inputs. It produces 29 outputs (See 
Appendix A for details on inputs and outputs), some include string fields which may not 
be needed for software programs. For example, based on the benchmark home output 
characteristics of SHGC and U-value, the BA-ToolKit will provide an estimate of the 
glass-type (Single, double, low-e double or low-e triple). For very simple programs, or 
complicated programs that model the sunlight through each glass layer this may be 
needed, as opposed to just the U-value and SHGC. 
 
Alternatively to using the master envelope procedure, programmers can call each 
envelope component procedure or function. Thus, if they just wanted to know the 
window U-value for a home they could call that routine, which only requires the heating 
degree days to obtain the window U-value. Although it is envisioned that calling the 
master unit is easier, there may some programmers who prefer the component approach 
because of the way they present data or write building decks. 
 
A helpful routine is included in the envelope section that is not called from the master as 
it would have required two additional inputs per assembly. The GetInsRValue routine 
calculates the cavity insulation R-value based on parallel heat transfer principles for an 
assembly. Given the overall U-value, the stud R-value and framing fraction and the R-
value of the components in series with both the stud and the cavity insulation, the 
function returns the cavity insulation R-value. The cavity insulation is often used to 
describe an assembly, e.g, “..the house has R-11 walls, R-30 ceiling, etc.” even though 
the total R-value of the assembly will be a different value. The BA benchmark routines as 
well as most performance based building codes simply provide an overall assembly U-
value. This routine allows a programmer who knows the characteristics of the typical 
building assembly and has calculated the overall U-value using the BA-ToolKit to 
determine the cavity R value for the benchmark home. It should prove useful for building 
decks as well as any simple building programs.   
 
2.2 Equipment 
 
The equipment unit includes procedures for determining the benchmark home heating, 
cooling, air distribution and mechanical ventilation characteristics. The master routine 
requires 23 inputs. The master unit will call each of the component units once. As such, it 
is not recommended for multiple system homes. For those homes, calling each 
component separately is recommended. For example, the Benchmark heating 
characteristics will change if the prototype has an electric or gas system. The type of 
heating system is a required input. Interestingly, the BA benchmark cooling system 
procedure requires no inputs. The benchmark duct system requires the prototype home 
finished floor area, the number of stories, the predominant foundation type, and the 
number of returns.   
 
The hot water calculation requires the monthly ambient temperatures and eight other 
inputs. Unlike other reference homes, the BA benchmark requires a number of 
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parameters to determine the hot water use per day. Other standards simply base it on the 
number of bedrooms, but the BA benchmark computes an average monthly value based 
on monthly average water mains, the hot water supply and delivery temperature, and 
expected dishwasher, clotheswasher, sink and shower/tub schedules based on the number 
of bedrooms as a surrogate for occupants.  
 
The mechanical ventilation routines calculate the flow and power based on the number of 
bedrooms and finished floor area. 
 
Detailed descriptions of inputs required for each function are included in Appendix A. 
 
2.3 Appliances 
 
The BA-Toolkit calculates Building America energy use parameters for the following 
appliances: 
 
  Clotheswashers 
  Dishwashers 
  Dryers 
  Hard-wired lighting 
  Plug-in Lighting 
  Range 
  Refrigeration 
  Miscellaneous (this represents non-lighting plug loads) and 
  Occupants. 
 
Similar to the envelope and equipment units, the appliance unit consists of a master and 
individual calls. A home with a gas and electric dryer may need to call the individual 
routines, however, some programs may only be set up for one of each appliance input. 
Each appliance procedure returns a peak hour power use and a 24-hour fraction of peak 
schedule, annual energy use and total, latent and sensible fraction of energy released to 
the interior.  
 
 
2.4 Miscellaneous algorithms 
 
The BA-Misc unit contains simple math or comparison functions used by multiple other 
units.  
 
2.5 The ToolKit Application for Testing 
 
The Building America ToolKit code was tested against the latest NREL spreadsheet for 
all benchmark specifications. The test unit was written in Visual Basic Application as a 
part of the spreadsheet.  The test program uses the Building America Prototype Input 
worksheet for inputs and the Calcs5 worksheet for weather data inputs. The BA-toolkit 
outputs are written to the Benchmark Outputs Test worksheet. The outputs are then 
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compared to the spreadsheet outputs to verify agreement. In order to aid a programmer, 
the output variable names are given to the right of the cell where the test software will 
produce the values. 
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3.0 A simplified hot water distribution system model  
 
3.1 Introduction 
 
Water heating in the U.S. is a major component of total energy consumption in buildings.  
In the residential sector water heating is about 11% of the total.3 The Department of 
Energy (DOE) lists total primary energy consumption for residential water heating at 
2.66 quads.  Hot water use in residential buildings accounts for the second largest portion 
of residential energy consumption in the U.S., second to the energy used for space 
heating.  
 
It has been estimated that, on average, hot water distribution losses can be in excess of 
20% between storage and the end-use point.4   As energy efficiency in buildings 
improves with technology advances and modern building practices, hot water heating 
energy can now reach as much as 32% of the energy used on a high performance home.5  
Although the efficiency of water heaters has been mandated by national standards, the 
efficiency of the distribution system has gone unaddressed. As such, it appears that there 
is much potential for energy savings in water heating systems by improving and 
optimizing the design of hot water distribution systems (HWDS).   
 
Many complex factors contribute to heat losses in a hot water distribution system. In 
addition to the thermal conductivity of the pipe materials used in today’s construction 
(i.e., copper, PEX and CPVC), the environment in which the pipe is routed plays an 
important role.  In a recent study for the CEC,  ORNL performed detailed simulations of 
typical HWDS installations and found significant line losses, especially in recirculating 
systems. 6 
 
Due to the complex heat losses of HWDS, models are needed to optimize HWDS by 
reducing heat losses. There are three models currently used to simulate thermal 
performance of hot water distribution systems: HWSim, ORNL-HWDS, and TRNSYS. 
 
The HWSIM model,7 originally developed in 1991 as part of Davis Energy Group’s 
(DEG) original hot water research for the California Energy Commission, has been used 
since 1992 to develop hot water distribution loss assumptions in California’s Residential 
Standards.  The program has significant capabilities but also has shortcomings stemming 

                                                 
3 Guide for the Evaluation of Energy Savings Potential, Office of Building Technology, State and 
Community Programs (BTS), Department of Energy, Industry Interactive Procurement Sysem (IIPS), < 
http:/e-center.doe.gov> 
4 California Energy Commission, Measure Analysis and Life-Cycle Cost (Part 1): 2005 California Building 
Energy Efficiency Standards, P400-02-011, April  2002 
5 Building America Experts Meeting Highlights Opportunities for Hot Water energy Savings, July 2004 
<http://www.eere.energy.gov/buildings/building_america/rh_0704_home_improve.html> 
6 Wendt, R., Baskin, E. and D. Durfee, “Evaluation of Residential Hot Water Distribution Systems by 
Numeric Simulation”, ORNL, May 2004 
7 Note: We could not find documentations related to HWSim publicly. The model information is extracted 
from Scope of Work: Water Heaters and Hot Water Distribution System, April, 2005, led by Lawrence 
Berkeley National Lab  
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from the limited scope of the original development effort.  In 2004, DEG obtained 
funding to enhance the program.  Key improvements to the model include the ability to 
simulate distribution system performance under changing environmental conditions (can 
adjust inlet cold water temperature and pipe environment temperatures on a monthly 
basis), improved user interface, and enhanced heat loss algorithms.   
 
ORNL has also developed a numerical model to estimate heat loss or gain from insulated 
and non-insulated hot water pipes.8  The required inputs are pipe parameters, insulation 
properties, and water flow rates. It calculates energy use, water consumption, and waiting 
time at use points. The model has been used to evaluate impacts of alternative HWDS in 
prototypes of California houses. The model includes thermal mass impacts from water, 
piping and water flow rates. The model is limited to the study of hot water distribution 
systems but could be incorporated into a whole building models like DOE-2 and 
EnergyPlus. 

Using the Transient Energy System Simulation Tool, TRNSYS,9 a simulation model was 
developed by NAHB to estimate energy consumption for hot water systems and to further 
simulate other system design options.10 The simulation model was calibrated with heat-
transfer coefficients determined by experimental results. The model requires water flow 
rates and assumes no thermal mass impacts. However, it is a whole building approach 
and is able to simulate interactions between a building and the HWDS. It was used to 
evaluate the use of demand water heating equipment in conjunction with various hot 
water piping configurations.  

The first two models are used to study hot water distribution systems only and may not 
meet Building America program requirements for a whole building approach. The third 
model is a whole building approach; however, it does not include the important thermal 
mass impacts. The present effort is to develop a simplified HWDS model that includes 
dynamic impacts and which can be used in the DOE-2 program as an input function. 
 
3.2 Simplified model development 
     
The following simplifying assumptions are used in the model developed here: 
 

• Water temperature is constant at a given cross section 
• When a copper pipe is used, conductive resistance through the copper pipe wall is 

assumed to be negligible 
• Water and copper pipe have the same temperature at a given cross section. 
• Water and copper pipe temperature is a function of distance from the hot water 

source and the length of time the outlet (faucet or shower) is activated. 

                                                 
8 Wendt, R.; E. Baskin & D. Durfee, 2004, “Evaluation of residential hot water distribution systems by 
numerical simulation,” Final report, Building Technology Center, Oak Ridge National Laboratory, Oak 
Ridge, Tennessee  
9 University of Wisconsin-Madison, Solar Energy Lab, http://sel.me.wisc.edu/TRNSYS/Default.htm 
10 NAHB Research Center, Inc., 2002, “Domestic hot water system modeling for the design of energy 
efficient systems,”  
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• Water and copper pipe temperature is a function of time only for a period 
following the time an outlet (faucet or shower) is deactivated. 

• Insulation has no thermal capacity. 
• Convective heat transfer coefficient on the air side of the at the external surface is 

independent of temperature and time.  
• Heat conduction in the water and tube in the axial direction is negligible.  
• Water flow is assumed to be fully developed. 

 
Simplified governing equation: 
 
HWDS On 
 

 
              (3-1)   

 
where                                      

•

m  = Water flow rate [kg/s] 
Cp,w = Water specific heat [J/kg.K] 
Cp,p = Pipe specific heat [J/kg.K] 
T = Pipe and water temperature [oC] = f(x,t) 
T∞ = Surrounding air temperature where a pipe is located [oC] 
ρw = Water density [kg/m3] 
ρp = Pipe density [kg/m3] 
Aw = Water flow area [m2] 
Ap = Pipe cross section area [m2] 
x = Pipe distance from hot water source [m] 
τ = Time [s] 
U = Overall heat transfer coefficient [W/m2.K] 

∑+
=

j

j

o k
t

h

U
1

1

                                                  (3-2) 
                                                                             

where 
ho = Heat transfer coefficient at the exterior pipe surface [W/m2.K] 

 ti = Thickness at i-th layer of a pipe [m] 
 ki = Thermal conductivity at i-th layer of a pipe [W/m.K] 
 
Let 
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τ ∞

∂ ∂⎡ ⎤+ + + =⎣ ⎦∂ ∂
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( ) ( ), ,w p w w p p p pa C A C Aρ ρ ρ= +
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Boundary condition: 
 T(0,t) = Tinlet [oC]  
Initial condition: 
 T(x,0) = Ta [oC] 
 
Numerical solution 
 
Since the governing equation is a partial differential equation with respect to distance and 
time, the equation may be solved numerically using the following finite difference 
method: 
 

1, ,
,

* / * /
/ /

m i c i p
i c

m

a T x a T UPT
T

a x a UP
ρ

ρ

τ
τ

− ∞Δ + Δ +
=

Δ + Δ +
                                                 (3-3) 

where 
 Ti,c =  Water temperature at ith node and current time step 
 Ti,p =  Water temperature at ith node and previous time step 

Δx = The distance between ith and (i+1)th node (L/200 is used in numerical 
solution) 

Δτ = The time difference between previous time step and current time step 
 
Analytical solution 
 
The Laplace transform was used to solve the first order partial differential equation. The 
temperature distribution in a pipe is expressed below: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

, ,

, ,

( , ) *exp *exp *
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*exp
( )

inlet a
p w w p w w p p p p
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a
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UPx UPtT x t T T T T T
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C A C A UPtu t x T T
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ρ ρ

ρ ρ

ρ ρ

∞ ∞ ∞

∞

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥= + − − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞+
− + − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

&

&

 

 (3-4) 

 
where 
 u(t) is a unit step function and may be written as 
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(3-8) 
 
HWDS Off 
 
Mass flow rate is set to zero. 
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Initial condition 
 T(0) = Tinit 
 
Analytical solution                                                   
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        (3-11) 
3.3 Model validation  
 
Copper pipe at D = 0.75 in 
Pipe length = 77 ft 
Inlet temperature = 131 F 
Initial temperature = 110 F 
Water flow rate = 2 gpm 
Ambient temperature = 90 F  
On time: 180 sec 
Off time: 5 minutes 
 
Figure 1 shows measured11 and predicted temperatures at the shower outlet before and 
during shower activation. The predicted temperatures were obtained from both numerical 
and exact solutions. While the numerical approach is only an approximation, it is very 
close to the measured data. The accuracy is dependent on magnitude of Δx and Δτ. Note 
that the exact solution shows temperature jump at time = 63 seconds instead of a slow 
temperature change.   This occurs because, due to the simplifying assumptions, a unit 
function is used. In this case, the numerical approach provides the better solution for 
temperature prediction. From a total energy loss perspective, integrating temperature with 
respect to time, both solutions provide similar results. The difference of the integrated 
areas between 40 and 63 seconds is equal to the difference of the integrated areas 
between 63 and 78 seconds. Hence, predicted energy losses are virtually identical for 
both the numerical and exact solutions. The energy loss during the shower on time (180 
seconds) is 6246.633 J from the numerical solution, and 6246.603 J from the exact 
solution.  

                                                 
11 Data measured at a Brevard County Florida residence in April 2005. See Appendix B for data. 
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Temperature at shower outlet during heating time
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Figure 1. Temperature comparison between measurement and prediction at shower outlet during 
heating time 
 
Figure 2 plots the temperature comparison between measurement and prediction at the 
shower outlet after the shower is turned off. Since it is easy to obtain an exact solution, 
no numerical approach is needed.  As shown in the figure, the data match quite well. 

Temperature at shower outlet during off time 
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Figure 2. Temperature comparison between measurement and prediction at shower outlet during 
heating off period 
 
3.4 Model application 
 
Even though simplifying assumptions are used for the governing equations, the above 
section shows that the model can predict the temperature distribution and energy losses 
very well. The next step is to integrate the model into a whole building simulation 
program, so that energy losses from HWDS becomes a part of energy uses in a whole 
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building. DOE-2 is selected as a whole building simulation program. The input function 
is named as DHWLOADS, and is called in the Zone section before zone calculation is 
performed in the system computation. The required input values are: 

• Tank size [gal] 
• Tank water set temperature [oF] 
• Pipe diameter [in] 
• Pipe length [ft] 
• Water flow rate [gal/min] 
• Thermal resistance of pipe insulation [R] 
• Copper pipe thickness [in]  
• Zone temperature where the pipes are located 
• Water use schedule 

 
Calculation procedure uses exact solutions for both heating on and off periods in the 
following steps: 

1. Check if the water heater is on or off based on given water heater 
operation schedule 

2. If water heater is off, calculate pipe heat losses based on Eq. (11) 
3. If water heater is on, calculate pipe heat losses based on Eq. (5) during on 

time fraction, then calculate pipe heat losses based on Eq. (11) during off 
time fraction 

4. Save pipe temperature for next time step use 
5. Add the pipe energy loss into DHWKW, variable for hot water heater 

energy use  
 

Note: When hot water heater is on during the whole hour, the pipe heat losses are 
calculated for an hour. When the hot water heater is on for a fraction of the 
hour, it is assumed that the heater is on from the beginning of the hour, and off 
in the rest of the hour.   

 
FUNCTION NAME = DHWLOADS .. 
  ASSIGN  IHR=IHR  IDAY=IDAY  IMO=IMO  INILZE=INILZE 
          DHWSIZ = DHWSIZ $SIZE OF DHW TANK$ 
          DHWGAL = DHWGAL $GAL/MIN WITH SKED= 60 GALS/DAY; VALUE SHOULD 
BE 30 + 10 * BROOMS$ 
          DHWTMP = DHWTMP $DHW WATER SET TEMPERATURE$ 
          DHWD = DHWD $ HWD Pipe diameter [in] 
          DHWL = DHWL $ HWD pipe length [ft] 
          DHWQ = DHWQ $ HWD water flow rate [gpm] 
          DHWR = DHWR $ Thermal resistance of pipe insulation 
          DHWT = DHWT $ Copper pipe thickness [in] 
          PI = 3.1415927 
          DTP=XXX50  $ Undocumented trick to save pipe temperature $ 
          DHWLOSS = XXX51 $ Hot water heater loss 
          TLIVIN = XXX24  $ Living Zone temp $ 
          QS = QS               $ Sensible cooling loads $ 
          QL = QL  ..              $ heating coil loads $ 
  CALCULATE .. 
C  WATER HEATING CONSUMPTION BY HOUR IS DETERMINED 
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         DHWFR= .2 
         IF (IHR .EQ. 2) DHWFR=.1 
         IF (IHR .EQ. 3) DHWFR=.0 
         IF (IHR .EQ. 4) DHWFR=.0 
         IF (IHR .EQ. 5) DHWFR=.0 
         IF (IHR .EQ. 6) DHWFR=.2 
         IF (IHR .EQ. 7) DHWFR=.4 
         IF (IHR .EQ. 8) DHWFR=1.0 
         IF (IHR .EQ. 9) DHWFR=.8 
         IF (IHR .EQ. 10) DHWFR=.82 
         IF (IHR .EQ. 11) DHWFR=.8 
         IF (IHR .EQ. 12) DHWFR=.72 
         IF (IHR .EQ. 13) DHWFR=.64 
         IF (IHR .EQ. 14) DHWFR=.56 
         IF (IHR .EQ. 15) DHWFR=.48 
         IF (IHR .EQ. 16) DHWFR=.44 
         IF (IHR .EQ. 17) DHWFR=.52 
         IF (IHR .EQ. 18) DHWFR=.64 
         IF (IHR .EQ. 19) DHWFR=.76 
         IF (IHR .EQ. 20) DHWFR=.84 
         IF (IHR .EQ. 21) DHWFR=.76 
         IF (IHR .EQ. 22) DHWFR=.68 
         IF (IHR .EQ. 23) DHWFR=.6 
         IF (IHR .EQ. 24) DHWFR=.52 
 
C      Start to calculate pipe losses of hot water distribution system 
        h_init = 0.0 
        h_use = 0.0 
        H_sby = 0.0 
        t_init = 0.0 
        t_on = 0.0 
        DHWLOSS = 0.0 
C        GOTO 101 
        DMCP = DHWQ*0.0000631*1000.0*4180.0 
        DArea = (DHWD/2.0*0.0254)*(DHWD/2.0*0.0254)*3.1415927 
        DRCpA = DArea*1000.0*4180.0+DHWD*0.0254*PI*DHWT*0.0254*390*8910 
        DUP = 1.0/(1.0/7.5+DHWR*0.176)*DHWD*0.0254*PI 
        DPL = DHWL*0.3048 
        IF (IMO .eq. 1 .and. IDAY .eq. 1 .AND. IHR .EQ. 1) DTP = 25.0 
        IF (IMO .eq. 1 .and. IDAY .eq. 1 .AND. IHR .EQ. 1) TLIVIN=23.8 
        DTIN = (DHWTMP-32)/1.8 
        DTAM = (TLIVIN-32)/1.8  
        T_s = DTP 
        IF (DHWFR .eq. 0) GOTO 85 
C       Initial stage 
        t_init = DRCpA/DMCP*DPL 
        h1 = DPL*DRCpA*(DTP-DTAM)*(1.0-exp(-DUP/DRCpA*t_init)) 
        h2 = DMCP*(DTIN-DTAM)*(t_init+DRCpA/DUP*(EXP(-DUP/DRCpA*t_init) 
     &       -1.0)) 
        h3 = (DTP-DTAM)*DRCPA*DMCP/DUP*(EXP(-DUP/DRCPA*t_init)* 
     &       (DUP/DRCPA*t_init+1.0)-1.0) 
        h_init = h1+h2+h3 
C       Use stage 
        t_on = DHWFR*DHWSIZ/DHWQ*60 
        h_use = DMCP*t_on*(DTIN-DTAM)*(1.0-EXP(-DUP*DPL/DMCP)) 
        t_s = (DTAM+(DTIN-DTAM)*EXP(-DUP*DPL/DMCP)) 
85      T_off = 3600-t_init-t_on 
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        if (T_off .LE. 0) goto 101 
        DTP = (T_s-DTAM)*exp(-DUP/DRCPA*T_off)+DTAM 
        H_sby = DRCPA*(T_s-DTAM)*(1.0-exp(-DUP/DRCPA*T_off))*DPL 
        H_loss = (H_init+h_use+h_sby)/3600*3.4123 
        DHWLOSS = (H_init+h_use)/3600/1000 
86      QS = QS+H_loss 
101     CONTINUE 
 
      END 
END-FUNCTION .. 
 
The following table lists annual simulation results in a home in Miami with and without 
HWDS losses, extracted from Report BEPS in units of MBtu. The domestic hot water 
heater energy use increases 2.4%, and whole building annual energy use increases 1.6% 
due to HWDS losses. 
 
Table 1: Building energy performance summary with and without HDWS losses 
 

Categary 
HWDS 
MBtu 

No HWDS 
MBtu 

AREA LIGHTS 4 4
MISC EQUIPMT 13.6 13.6
SPACE HEAT 0 0
SPACE COOL 3.8 3.6
VENT FANS 1 1
DOMHOT WATER 8.6 8.4
TOTAL 31.1 30.6

Outside of this contract, FSEC will incorporate this algorithm for hot water distribution in 
its software products.  
 
3.5 Simplified Hot Water Distribution Modeling Conclusions 
 
A simplified model to calculate HWDS energy losses, including thermal capacity impact, 
was developed. The model was validated against limited measured data and was 
successfully integrated into a whole building simulation program to calculate impact of 
HWDS energy losses on whole building energy use. 
 
Although the code is written as an input function of DOE-2, the input function can be 
used as a general function to calculate HWDS losses, as long as required inputs are 
available.    
 
Due to limitation of DOE-2, the input function is only able to simulate straight piping of 
the same size. However, the governing equations may be easily integrated into a network 
model to calculate heat losses in a realistic HWDS.   
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4.0 Ventilation models 
 
4.1 Expanded ventilation capabilities 
 
Recently, outside of this contract, FSEC expanded EnergyGauge ventilation control 
capabilities by adding a max-time damper control for ventilation systems. This was 
implemented through a function that runs the fan between a specified minimum and 
maximum runtime. Exact implementation of this will depend on the simulation program 
used. FSEC has added a private function to DOE-2 and the algorithm is incorporated into 
that function. Building America teams can now choose the following mechanical 
ventilation strategies: 
 

• No mechanical ventilation provided 
• Supply air fan 
• Exhaust air fan 
• Both supply and exhaust air fan (Fully or partially balanced) 
• Enthalpy recovery ventilation system 
• Runtime ventilation where ventilation air is provided only when heating and 

cooling systems run (supply vent using the air handler unit) 
• Runtime ventilation with a required minimum where the HVAC fan runs for a 

minimum amount of time each hour 
• Runtime ventilation where the outside air damper will close if the air handler 

system has run a set amount of time during the hour 
• A system that has a required minimum runtime and a closure for the outside air 

damper after a maximum amount of time run that hour 
• A system that provides no outdoor ventilation air but does provide a set 

ventilation  fan power (this is primarily for some reference building energy use 
rule sets). 

 
4.2 Reporting Ventilation Fan Energy 
 
DOE-2 reports the fan energy in report SS-L. This SS-L report allows for separate 
reporting of ventilation fan energy during non-heating and non-cooling hours. In order to 
process scoring requirements  that consider the energy use of mechanical fans (HERS 
2006 for instance), the ventilation fan energy used during heating and cooling hours is 
proportioned to heating and cooling in accordance with those energy uses. For allocation 
purposes, the fan energy used during non-heating and non-cooling hours, which DOE2 
reports on the SS-L report, is added to the total by the proportion of heating and cooling 
fan energy used that month. If no heating or cooling fan energy was used that month then 
50% is added to each.  
 
Listing fan energy use separately is a challenge. During runtime ventilation fan energy is 
not separated from standard air handler use even though the act of bringing in extra air 
may increase the air handler runtime.  For the benchmark and other reference home 
buildings (e.g., HERS 2006 reference), the annual mechanical vent fan energy use is 
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calculated according to formulas and is divided into heating and cooling portions based 
on the ratio of heating to cooling energy use. hours. 
 
Greater accuracy in separating out fan power can be obtained from EnergyPlus or other 
tools that can report energy use within smaller time steps. This becomes important for the 
runtime ventilation with minimum or maximum controls to separate out the time steps 
when the system would have run anyhow and the time steps where it does not.  
 
4.3 Ventilation fan energy use example 
 
The following example results are for a St. Louis home that would score 30% on the 
Building America benchmark analysis. The 2040 square-foot home is modeled with an 
ach50 of 4.0 and a SEER 14/ HSPF 8.5 heat pump. More details of the home are 
described in another report.12 The following mechanical ventilation options produce the 
following results using EnergyGauge USA, version 2.5, release 10 (pre-release 
developer’s version) and the Calculate > Annual Simulation menu option with the 
following key parameters set to minimize influences on the results: 

• no natural ventilation allowed (no opening windows for passive cooling as the 
EnergyGauge program shuts off all mechanical ventilation during times when 
algorithms indicate conditions are favorable for opening windows) 

• auto-sizing set to off – all results based on Cooling system size of 28.9 kBtu/h and 
Heating system size of 49.7 kBtu/h.  

Results will be different for rated, proposed code and prototype buildings due to rules 
that alter the amount of ventilation to assure that specified rule set standards are met. 
  
Table 2. Cooling energy use (kWh) variation with mechanical ventilation fan strategy 
Mechanical Vent 
Method: 
50 cfm rate entered for all 

Cooling Cooling 
and Mech. 
Vent Fan  

Mech Vent Fan 
when cooling 
system off* 

Total 
Cooling 

% Increase 
from no vent 

None 1913 349 0 2262 0 
Supply Vent, 20 W 
continuous 1996 424 11 2431 7.5% 

Exhaust Vent, 20 W 
continuous 1979 421 11 2411 6.6% 

Balanced Vent, 40 W 
continuous 2046 490 21 2557 13.0% 

0.6 effective ERV, 40 W 
continuous 1981 484 23 2488 10.0% 

Runtime Vent 1947 355 0 2302 1.8% 
Runtime Vent w/25% min. 
runtime 1967 510 94 2571 13.7% 

Runtime vent w/outside 
damper off at 25% max. 
runtime  

1920 351 0 2271 0.40% 

Runtime Vent w/25% min. 
and 25% max. 1940 515 93 2548 12.6% 

*Represents added energy use during hours when there is no cooling or heating as proportioned to cooling 

                                                 
12 Fairey, Philip, Carlos Colon, Eric Martin, Subrato Chandra, “Comparing Apples, Oranges and Grapefruit:  An Analysis of 
Current Building Energy Analysis Standards for Building America, Home Energy Ratings and the 2006 International Energy 
Conservation Code,” FSEC_CR_1650-06, September, 2006. 
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Table 3. Heating energy use (kWh) variation with mechanical ventilation fan strategy 
 
Mechanical Vent 
Method: 
50 cfm rate entered for all 

Heating Heating 
and Mech. 
Vent Fan 

Mech Vent 
Fan when 
heating 
system off* 

Total 
Heating 

% Increase 
from no vent 

None 5608 826 0 6434 0 
Supply Vent,20 W 5971 951 25 6947 8.0% 
Exhaust Vent, 20 W 
continuous 6003 955 25 6983 8.5% 

Balanced Vent, 40 W 
continuous 6733 1124 49 7906 22.9% 

0. 6 effective ERV, 40 W 
continuous 6025 1033 49 7107 10.5% 

Runtime Vent 5634 824 0 6462 0.44% 
Runtime Vent w/25% min. 
runtime 5608 937 169 6714 4.4% 

Runtime vent w/outside 
damper off at 25% max. 
runtime 

5624 828 0 6452 0.28% 

Runtime Vent w/25% min. 
and 25% max. 5598 936 169 9703 4.2% 

*Represents added energy use during hours when there is no cooling or heating as proportioned to heating 
 
Some explanation may help one understand the results shown in Tables 2 and 3.  
 
4.3.1 Continuous Ventilation Systems 
 
The exhaust vent option uses slightly more energy for heating, but slightly less for 
cooling due to the heat of the fan being added to the space for the supply fan but not for 
the exhaust fan. 
 
Balanced air flow results in larger ventilation rates due to the governing equation (4-1) 
for combining forced and natural ventilation.  
 

Eq. 4 -1 Qtotal  =  (Qnat
2 + Qunbal

2)0.5+QBal 
  

where Q represents volume of air flow (cfm or m/s). 
 
We also assumed balanced flow required twice the fan power of unbalanced flow (40W 
vs. 20W).  Even when a 60% enthalpy recovery ventilator (ERV) is added, the energy use 
is greater than for an  unbalanced simple ventilation system. 
 
4.3.2 Runtime Ventilation Systems 
 
The runtime vent method uses the heating and cooling system fan and a purposeful, 
ducted return leak “hole” with a damper to bring in outside air when the system runs. 
Without any other controls, it only brings in fresh air only during periods when heating or 
cooling requires the air handler to run. For the St. Louis home, the runtime vent option 
only slightly increased heating and cooling energy use. Considering that we were only 
adding 50 cfm when the system runs this is not surprising. For the St. Louis climate, the 
home’s mechanical systems were only on 21.6% of the time.  Thus, on average for the 
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year, the home only was mechanically ventilated at an equivalent of 10.8 cfm (39.2 cfm 
less than the continuous vent runs) and the net effect when combined with the envelope 
ach50 leakage of 4.0 is very small. How small? Computing the difference between 
straight natural infiltration and the total from the runtime ventilation run requires looking 
at the difference between the flow calculated from equation 4-1 and what would have 
otherwise occurred. 
 

Eq. 4-2  Qdifference  = Qtotal - Qnat 
 
 
Figure 3 represents the hourly Qnat and Qdifference for the runtime ventilation case. The 
average Qdifference value is 2.6 cfm. Thus, runtime vent is hardly any different, on an 
annual basis, than no mechanical venting. Peak summer hours for this case were as high 
as 26 cfm and thus for some select hours the mechanical ventilation may make a 
significant difference but not on an annualized basis.  
 
Runtime ventilation is highly dependent on system size. The system size entered (49.7 
kBtu/h for winter and 28.9 kBtu/h for cooling) yielded very low winter runtimes as 
shown on the top of Figure 3.  

 
Figure 3. Hourly natural and added ventilation rates for runtime vent case. Inputs 
were 50 cfm mechanical and 4 ach50 leakage (natural). Natural infiltration is 
adjusted hourly by DOE2 based on natural driving forces (e.g., wind speed). 
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Requiring the ventilation system to run at least 25% of each hour increases heating by 4 
% and cooling by 14% compared to the no-vent scenario. On the other hand, if the 
runtime vent is limited with a damper to be no greater than 25% of the hour, the model 
predicts almost no difference in cooling or heating energy use. This is as expected 
because the system will supply even less outside air than the simple runtime vent case 
shown in Figure 3, where for some hours it is adding ventilation air for much more than 
25% of the hour. Finally, a sophisticated controller that maintains exactly 25% minimum 
and maximum runtime each hour results in a 4% increase in heating and a 13% increase 
in cooling energy use compared to no venting, , or slightly less energy penalty than the 
simpler 25% minimum runtime.  
 
4.3.3. Fan Energy Use Explains Overall Energy Use Changes 
 
Examining the breakout between actual cooling/heating and the fan energy use, it is 
apparent that most of the added energy is from the fan. The percentage increase in 
cooling for runtime vent with minimum is much higher than the heating percentage 
simply because the extra fan energy is a higher percentage of the total cooling. Actual 
cooling load is only slightly larger, not surprising as buildings require cooling many 
times when it is more comfortable outside. This occurs due to internal and solar gains 
creating cooling loads but reducing heating loads. Additionally, considering the fan 
motor adds extra internal load (166 kWh during cooling hours for the 25% fixed runtime 
case), it can explain all the difference in the column labeled cooling energy in Table 2 (27 
kWh difference in the 25% fixed runtime case). 
 
4.3.4. Fan Heat Energy is Extra Load 
 
The heating value column in Table 2 is slightly misleading as the extra fan runtime also 
provides heat from its motor. Thus, the 25% fixed runtime case shows less heating 
(excluding fans) than the no vent case, but the software models the extra 279 kWh of fan 
energy as heat which in this case, with minimal added outside air, more than makes up 
for the added heating load due to infiltration. 
 
 
5.0 Conclusions 
 
FSEC has added capabilities for modelers to more accurately and more readily perform 
Building America energy analysis. The BA Toolkit allows programmers to obtain 
Benchmark characteristics easily. The ToolKit has been verified against the NREL 
spreadsheet tool. The spreadsheet tool proved an excellent method for validating the 
software as well as a good source for programming the algorithms for the ToolKit.  
 
The simple hot water distribution algorithm FSEC developed provides a method to more 
accurately account for losses, and FSEC has demonstrated a “typical” straight piping loss 
in a Miami home may represent an increase of 2.4 % of the hot water energy use and also 
a slight increase in cooling energy.  
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Ventilation energy use methodologies have been expanded.  Results from example runs 
indicate that fresh air provided by systems as well as energy use due to ventilation energy 
can vary significantly depending on the system control characteristics, even while sizing 
the ventilation system for the same amount of outside air when venting.  Simple runtime 
vent systems may only bring in air 20% to 25% of the time on an annual average 
compared to continuous vent systems. The actual amount of additional air brought in 
relative to a natural infiltration only case can be very small as the unbalanced supply air 
is added in quadrature with natural ventilation. In a simple runtime ventilation scheme the 
model projects an annual average of only 2.6 cfm for a home with a 50 cfm runtime vent 
rate and 4 ach50 envelope leakage. 
 
Assuring that the runtime vent system operates 25% of every hour results in a small 
energy penalty (4% and 13% of heating and cooling energy, respectively, in the St. Louis 
example). Much of this penalty is due to the energy use of the fan. Balanced ventilation 
strategies result in more outside air and typically require more fan energy use than supply 
or exhaust systems. Simulation results for St. Louis predict that even with 60% recovery, 
enthalpy ventilation systems may result in greater energy use than supply or exhaust 
ventilation systems that take half the fan energy. 
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Appendix A. Building America Benchmark Toolkit Software Description Details 
Classes 

• BA_BenchmarkEnvelope 
• BA_BenchmarkAppliances 
• BA_BenchmarkEquipment 
• BA_MiscCalc 

 
BA_BenchmarkEnvelope 
 
Description: The class contains methods to calculate the envelope parameters of the 
Building America benchmark home. 
 
 
Method Summary 

 

BA_Benchmark2006EnvelopeMaster(Htg_Deg_Days As Single, 
Floor_Area As Single, Wall_Area_Gross As Single, 
Wall_Area_Belowgrade As Single, Wall_Area_Common As 
Single, Weather_Factor As Single, BasementFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As 
Boolean, BasementConditioned As Boolean) 

Double GetInsRValue(FF As Double, Uo As Double, StudR As Double, 
RestR As Double, GetInsRError As Boolean)  

 Ref_DoorU( ) 

Single Ref_DoorArea( ) 

 

Ref_Window_Area(Floor_Area As Single, Wall_Area_Common 
As Single, Wall_Area_Gross As Single, Wall_Area_Belowgrade 
As Single, BasementConditionedFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As 
Boolean, BasementConditioned As Boolean) 

 Ref_Wall_Ucalc(Htg_Deg_Days As Single, Attach As Boolean)   

 Ref_Window_Ucalc(Htg_Deg_Days As Single) 

 Ref_Floor_Ucalc(Htg_Deg_Days As Single) 

 Ref_SlabFloor_Ucalc(Htg_Deg_Days As Single) 

 Ref_RaisedFloor_Ucalc(Htg_Deg_Days As Single)   

 Ref_Basement_Ucalc(Htg_Deg_Days As Single) 

 Ref_Crawlspace_Ucalc(Htg_Deg_Days As Single) 

 Ref_Ceiling_Ucalc(Htg_Deg_Days As Single)   

Single Ref_WallSolarAbsorptance( )   
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Single Ref_WallEmittance( ) 

Single Ref_RoofSolarAbsorptance( ) 

Single Ref_RoofEmittance( ) 

 Ref_Framing_Fractions( )   

 Ref_RoofInsulation( ) 

Single Ref_Infiltration(Weather_Factor As Single)  

 Ref_ShadingCoefficients(Htg_Deg_Days As Single) 

 Ref_Windows( )   

 Ref_Roof( ) 

 Final_U_Values( ) 

 ValueError(compname As String, compvalue As Single)   
TBA_Benchmark

EnvCalcOut 
Get_Envelope_Outputs( ) 
 

Single FurnitureMass( )  

Single PercentCarpet( ) 

Single SlabInsulationDepth(Htg_Deg_Days As Single) 

Single 
BasementSpecificLeakageArea(Wall_Area_Belowgrade As 
Single, Weather_Factor As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single) 

Single 

OverallSpecificLeakageArea(Floor_Area As Single, 
Wall_Area_Belowgrade As Single, Weather_Factor As Single, 
BasementConditionedFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single) 

Boolean HDDError(HDD As Single) 

String GetGlassType(Uvalue As Single) 

 
Mixed_Floor(Tile_Frac As Single, Hardwood_Frac As Single, 
Carpet_Frac As Single, TH As Single, Cond As Single, Dens As 
Single, SH As Single, MixedRvalue As Single) 

Single ConvertSHGCtoSC(SHGC As Single, Screen_Multiplier As 
Single) 
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Method Detail 
 
BA_Benchmark2006EnvelopeMaster 
 
BA_Benchmark2006EnvelopeMaster (Htg_Deg_Days As Single, Floor_Area As Single, 
Wall_Area_Gross As Single, Wall_Area_Belowgrade As Single, Wall_Area_Common As 
Single, Weather_Factor As Single, BasementFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As Boolean, 
BasementConditioned As Boolean) 
 
This method calls each envelope component routine. 
 
   

Parameters: 
Htg_Deg_Days - use NREL values from Calcs5 page of spreadsheet 
Floor_Area - conditioned floor area of home (ft2) 
Wall_Area_Gross - gross wall area of non-basement portion of home  

includes window and door areas within wall 
Wall_Area_Belowgrade - wall area below grade (ft2) 
Wall_Area_Common - for attached dwellings this is the wall area of the  

common wall (ft2) 
Weather_Factor - based on the city 
BasementFloorArea- the area of the basement (ft2) 
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of  

the basement wall area (ft2) 
Attach – true if house is considered an attached dwelling 
BasementConditioned – true if home has part of basement conditioned 

Returns: 
None 

Throws: 
None  

 
 
 
GetInsRValue 
 
Double GetInsRValue (FF As Double, Uo As Double, StudR As Double, RestR As Double, 
GetInsRError As Boolean) 
 
This method returns the Insulation R Value based on the envelope assembly (wall, roof, floor, 
etc.) parameters solving for parallel heat flow. 
 

Parameters: 
FF – Framing Factor of assembly (0 to 1.0) 
Uo -  Overall U value of assembly such as those returned from Benchmark 
envelope routines 
StudR -  The R value of the stud 
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RestR -  The R value of all parts in common with both the framing and insulating 
portions of assembly 

GetInsRError – True if an error is found in routine 
Returns: 
 GetInsRValue 
Throws: 
 None 

 
 
 
Ref_DoorU 
 
Ref_DoorU( ) 
 
This method 
 

Parameters: 
None  

Returns: 
 None 
Throws: 
 None 

 
 
Ref_DoorArea 
 
Single Ref_DoorArea( ) 
 
This method sets the door are of the home 
 

Parameters: 
None  

Returns: 
 Reference door area 
Throws: 
 None 

 
 
Ref_Window_Area 
 
Ref_Window_Area(Floor_Area As Single, Wall_Area_Common As Single, Wall_Area_Gross 
As Single, Wall_Area_Belowgrade As Single, BasementFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As Boolean, 
BasementConditioned As Boolean) 
 
This method calculates the window area, Fa, and F of the home 
 

Parameters: 
Htg_Deg_Days – Heating Degree Days base 65 F 
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Floor_Area - conditioned floor area of home (ft2) 
Wall_Area_Common - for attached dwellings this is the wall area of the  

common wall (ft2) 
Wall_Area_Gross - gross wall area of non-basement portion of home  

includes window and door areas within wall 
Wall_Area_Belowgrade - wall area below grade (ft2) 
BasementFloorArea- the area of the basement (ft2) 
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of  

the basement wall area (ft2) 
Attach – true if house is considered an attached dwelling 
BasementConditioned – true if home has part of basement conditioned 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Wall_Ucalc 
 
Ref_Wall_Ucalc(Htg_Deg_Days As Single, Attach As Boolean) 
 
This method calculates the overall U value of the wall assembly 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 
Attach -  true if house is considered an attached dwelling 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Window_Ucalc 
 
 
Ref_Window_Ucalc(Htg_Deg_Days As Single) 
 
This method calculates the overall U value fo the window assembly 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Floor_Ucalc 
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Ref_Floor_Ucalc(Htg_Deg_Days As Single) 
 
This method calculates the overall U value of floor assemblies between conditioned and 
non-conditioned space 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_SlabFloor_Ucalc 
 
Ref_SlabFloor_Ucalc(Htg_Deg_Days As Single) 
 
This method calculates the perimeter insulation U value 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_RaisedFloor_Ucalc 
 
Ref_RaisedFloor_Ucalc(Htg_Deg_Days As Single)  
 
This method calculates the U value of the assembly 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
  
Ref_Basement_Ucalc 
 
Ref_Basement_Ucalc(Htg_Deg_Days As Single) 
 
This method calculates the U value fo the basement walls 
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Parameters: 

Htg_Deg_Days - Heating Degree Days base 65 F  
Returns: 
 None 
Throws: 
 None 

 
 
Ref_Crawlspace_Ucalc 
 
Ref_Crawlspace_Ucalc(Htg_Deg_Days As Single) 
 
This method calculates the U value fo the crawlspace walls 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Ceiling_Ucalc 
 
Ref_Ceiling_Ucalc(Htg_Deg_Days As Single)   
 
This method calculates the U value of the ceiling assembly 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
GetCeilingUvalue 
 
 
Single GetCeilingUvalue(Htg_Deg_Days As Single) 
 
This method calculates the 
 

Parameters: 
Htg_Deg_Days -  

Returns: 
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 Ceiling U Value 
Throws: 
 None 

 
 
Ref_WallSolarAbsorptance 
 
 
Single Ref_WallSolarAbsorptance( )   
 
This method calculates the exterior wall solar absorptance 
 

Parameters: 
None  

Returns: 
 Reference Wall Solar Absorptance 
Throws: 
 None 

 
Ref_WallEmittance 
 
Single Ref_WallEmittance( ) 
 
This method calculates the exterior wall emittance 
 

Parameters: 
None  

Returns: 
 Reference Wall Emittance 
Throws: 
 None 

 
 
Ref_RoofSolarAbsorptance 
 
Single Ref_RoofSolarAbsorptance( ) 
 
This method calculates the roof exterior solar absorptance 
 

Parameters: 
None  

Returns: 
 Reference Roof Solar Absorptance 
Throws: 
 None 
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Ref_RoofEmittance 
 
 
Single Ref_RoofEmittance( ) 
 
This method calculates the exterior roof surface emissivity 
 

Parameters: 
None  

Returns: 
 Reference Roof Emittance 
Throws: 
 None 

 
 
Ref_Framing_Fractions 
 
Ref_Framing_Fractions( )   
 
This method calculates the framing fractions for walls, floors, ceilings and roofs 
 

Parameters: 
None  

Returns: 
 None 
Throws: 
 None 

 
 
Ref_RoofInsulation 
 
Ref_RoofInsulation( ) 
 
This method calculates the insulation level of material adjacent to the roof 
 

Parameters: 
None  

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Infiltration 
 
 
Single Ref_Infiltration(Weather_Factor As Single)  
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This method calculates the natural infiltration (leakage) of the home 
 

Parameters: 
Weather_Factor -   

Returns: 
 Reference Infiltration 
Throws: 
 None 

 
 
Ref_ShadingCoefficients 
 
Ref_ShadingCoefficients(Htg_Deg_Days As Single) 
 
This method calculates the solar heat gain shading coefficient for the windows 
 

Parameters: 
Htg_Deg_Days - Heating Degree Days base 65 F 

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Windows 
 
Ref_Windows( )   
 
This method calculates related glass parameters: 
   BA_BenchmarkEnvCalcOut.Overhangs := 0; 

BA_BenchmarkEnvCalcOut.Glass_Type : = 
GetGlassType(BA_BenchmarkEnvCalcOut.UValuesAssembly.Window_);          
BA_BenchmarkEnvCalcOut.Frame_Type := 'Vinyl'; 

   BA_BenchmarkEnvCalcOut.Int_Shading := 'Drapes/blinds'; 
            BA_BenchmarkEnvCalcOut.Screening := 'None'; 
 

Parameters: 
None  

Returns: 
 None 
Throws: 
 None 

 
 
Ref_Roof 
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Ref_Roof( ) 
 
This method sets the following roof outputs: 

BA_BenchmarkEnvCalcOut.Roof_Deck_Insulation_Lvl := 0; 
   BA_BenchmarkEnvCalcOut.Roof_Color := 'White'; 
   BA_BenchmarkEnvCalcOut.Roof_Material := 'Composition shingles'; 
   BA_BenchmarkEnvCalcOut.Attic_Description := 'Full attic'; 
   BA_BenchmarkEnvCalcOut.Roof_Config := 'Gable or shed'; 
   BA_BenchmarkEnvCalcOut.Attic_Vent_Ratio := 1/300; 
 

Parameters: 
None  

Returns: 
 None 
Throws: 
 None 

 
ValueError   
 
ValueError(compname As String, compvalue As Single)   
 
This method provides an error mesage 
 

Parameters: 
compname – The name of the component not meeting an error rule 
compvalue -  The value fo the component 

Returns: 
 None 
Throws: 
 None 

 
 
Get_Envelope_Outputs 
 
TBA_BenchmarkEnvCalcOut Get_Envelope_Outputs( ) 
 
This method returns all of the envelope characteristics for a given prototype home. 
 

Parameters: 
None  

Returns: 
 Record consisting of outputs of Envelope Calculations 
TBA_BenchmarkEnvCalcOut = record 
   BA_Benchmark_Error: WordBool; 
  Radiant_Barrier: WordBool; 
  Attic_Vent_Ratio: Single; 
  Ceiling_Framing_Fraction: Single; 
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  CrawlspaceWall_Framing_Fraction: Single; 
  Door_Area: Single; 
  Floor_Framing_Fraction: Single; 
  Overhangs: Single; 
  Roof_Deck_Insulation_Lvl: Single; 
  Roof_Framing_Fraction: Single; 
  SC_Cooling: Single; 
  SC_Heating: Single; 
  SHGC_Cooling: Single; 
  SHGC_Heating: Single; 
  SLA: Single; 
  SolarAbsorptance_Roof: Single; 
  SolarAbsorptance_Walls: Single; 
  Wall_Framing_Fraction: Single; 
  WindowArea: Single; 
  WindowFrameArea: Single; 
  SuperGrossWallArea: Single; 
  TotalThermalBoundaryWallArea: Single; 
  F_Attached: Single; 
  FA: Single; 
  Emittance_Roof: Single; 
  Emittance_Walls: Single; 
  SlabInsulationDepth: Single; 
  PercentCarpet: Single; 
  CarpetRValue: Single; 
  FurnitureMass: Single; 
  BasementSLA: Single; 
  OVerallSLA: Single; 
  Attic_Description: WideString; 
  Frame_Type: WideString; 
  Glass_Type: WideString; 
  Int_Shading: WideString; 
  Roof_Color: WideString; 
  Roof_Config: WideString; 
  Roof_Material: WideString; 
  Screening: WideString; 
  RValuesAssembly: TUandRvalues; 
  RValuesInsulation: TUandRvalues; 
  RStud: TUandRvalues; 
  RRest: TUandRvalues; 
  UValuesAssembly: TUandRvalues; 
  UValuesInsulation: TUandRvalues; 

Where 
  TUandRvalues = record 
  BasementCeil: Single; 
  BasementWall: Single; 
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  Ceil: Single; 
  CrawlspaceWall: Single; 
  CrawlspaceCeil: Single; 
  Door: Single; 
  FloorOverGarage: Single; 
  FloorRaised: Single; 
  Overall: Single; 
  Roof: Single; 
  SlabPerimeterUnheated: Single; 
  SlabPerimeterHeated: Single; 
  Wall: Single; 
  Window: Single; 
 

Throws: 
 None 

 
 
FurnitureMass( ) 
 
Single FurnitureMass( )  
 
This method calculates the furniture mass for the building 
 

Parameters: 
None  

Returns: 
 Furniture Mass 
Throws: 
 None 

 
 
PercentCarpet 
 
Single PercentCarpet( ) 
 
This method calculates the percent carpet 
 

Parameters: 
None  

Returns: 
 Carpet Percentage 
Throws: 
 None 

 
 
SlabInsulationDepth 
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Single SlabInsulationDepth(Htg_Deg_Days As Single) 
 
This method calculates the depth of the perimeter insulation 
 

Parameters: 
Htg_Deg_Days -  Heating Degree Days base 65 F 

Returns: 
 Slab Insulation Depth 
Throws: 
 None 

 
 
BasementSpecificLeakageArea 
 
Single BasementSpecificLeakageArea(Wall_Area_Belowgrade As Single, Weather_Factor As 
Single, Basement_Gross_Wall_Area_Above_Grade As Single) 
 
This method calculates the specific leakage area of the basement 
 

Parameters: 
Wall_Area_Belowgrade - – the area (ft2) of basement wall that is below 
ground level 
Weather_Factor – climate dependent wind/terrain parameter 
Basement_Gross_Wall_Area_Above_Grade – the area (ft2) of basement wal 
that is above ground level 

Returns: 
 Basement Specific Leakage Area 
Throws: 
 None 

 
 
OverallSpecificLeakageArea 
 
Single OverallSpecificLeakageArea(Floor_Area As Single, Wall_Area_Belowgrade As Single, 
Weather_Factor As Single, BasementFloorArea As Single, 
Basement_Gross_Wall_Area_Above_Grade As Single) 
 
This method calculates the home specific leakage area 
 

Parameters: 
Floor_Area - conditioned floor area of home (ft2) 
Wall_Area_Belowgrade - wall area below grade (ft2) 
Weather_Factor - based on the city 
BasementFloorArea- the area of the basement (ft2) 
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of  

the basement wall area (ft2) 
 

Returns: 
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 Overall Specific Leakage Area 
Throws: 
 None 

 
 
HDDError 
 
Boolean HDDError(HDD As Single) 
 
This method returns True if HDD is less than 0 or greater than 60,000 
 

Parameters: 
HDD – heating degree days (base 65 F) 

Returns: 
  
Throws: 
 None 

 
 
GetGlassType 
 
String GetGlassType(Uvalue As Single) 
 
This method calculates the type of window that best matches the U-value 
 if Uvalue >= 0.9 then Result := 'Single' 
   else if (Uvalue >= 0.57) and (Uvalue < 0.9) then Result := 'Double' 
   else if (Uvalue >= 0.45) and (Uvalue < 0.57) then Result := 'Low-E Double' 
   else if Uvalue < 0.45 then Result := 'Low-E Triple'; 
 

Parameters: 
Uvalue – The U-value fo the overall window assembly 

Returns: 
 Glass Type 
Throws: 
 None 

 
 
Mixed_Floor 
 
Mixed_Floor(Tile_Frac As Single, Hardwood_Frac As Single, Carpet_Frac As Single, TH As 
Single, Cond As Single, Dens As Single, SH As Single, MixedRvalue As Single) 
 
This method calculates the heat transfer properties of a single floor material that is 
calculated based on the fraction of floor areas and default properties for tile, sood and 
carpet. 

Parameters: 
Tile_Frac -  fraction of floor area (0 to 1.0) that is tile 
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Hardwood_Frac – Fraction of floor area (0 to 1.0) that is wood 
Carpet_Frac – Fraction of floor area (0 to 1.0) that is carpet 

Returns: 
TH – Mixed property thickness 
Cond – Mixed property conductivity 
Dens – Mixed floor property density 
SH – Mixed floor property specific heat 
MixedRvalue – The R-value of the mixed property 

 
Throws: 
 None 

 
 
ConvertSHGCtoSC 
 
Single ConvertSHGCtoSC(SHGC As Single, Screen_Multiplier As Single) 
 
This method converts SHGC to SC according to ASHRAE Fundamentals 
1997, page 29.23, equation 38 
 

Parameters: 
SHGC – The solar heat gain coefficient for the window 
Screen_Multiplier – Value (0 to 1) for any insect or other window screening 

Returns: 
  
Throws: 
 None 
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BA_BenchmarkAppliances 
 
Description: The class calculates the energy use and hourly schedules of appliances and 
the sensible and latent internal loads form the appliances and occupants. 
 
 
Method Summary 

 
BA_Benchmark2006AppliancesMaster(Beds As Integer, FFA As 
Single, StateMultiplier As Single, DryerFuel As String, 
RangeFuel As String) 

 Clotheswasher(Beds As Integer) 

 Dishwasher(Beds As Integer) 

 Dryer(Beds As Integer, DryerFuel As String)   

 Lighting(FFA As Double) 

 Misc(FFA As Double, StateMultiplier As Double)   

 Occupancy(Beds As Integer) 

 Range(RangeFuel As String) 

 Refrigeration( ) 

Double ConvertThermsToPropaneGal(Therms As Double) 
TBA_BenchmarkA

ppliancesCalcOut Get_Appliances_Outputs( ) 

 PlugInLighting(FFA As Double) 
 
 
 

Method Detail 
 
BA_Benchmark2006AppliancesMaster 
 
BA_Benchmark2006AppliancesMaster (Beds As Integer, FFA As Single, StateMultiplier As 
Single, DryerFuel As String, RangeFuel As String)  
 
This method calls each appliance component routine. 
   

Parameters: 
Beds – Number of Bedrooms 
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FFA – Finished Floor Area 
StateMultiplier – Factor from NREL spreadsheet 
DryerFuel – ‘Electric’ or ‘Gas’ or ‘Propane’ 
RangeFuel – ‘Electric’ or ‘Gas’ or ‘Propane’ 

Returns: 
None 

Throws: 
None  

 
 
 
Clotheswasher 
 
Clotheswasher(Beds As Integer) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Cotheswasher_Info record. 
   

Parameters: 
Beds – Number of Bedrooms 

Returns: 
None 

Throws: 
None  

 
 
 
 
Dishwasher 
 
Dishwasher(Beds As Integer) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Dishwasher_Info record. 
   

Parameters: 
Beds – Number of Bedrooms 

Returns: 
None 

Throws: 
None  

 
 
 
 
Dryer 
 
Dryer(Beds As Integer, DryerFuel As String)   
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Dryer_Info record. 
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Parameters: 
Beds – Number of Bedrooms 
DryerFuel – ‘Electric’ or “Gas’ or ‘Propane’ 

Returns: 
None 

Throws: 
None  

 
 
 
 
Lighting 
 
Lighting(FFA As Double) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Lighting_Info record. 
   

Parameters: 
FFA – Finished Floor Area 

Returns: 
None 

Throws: 
None  

 
 
 
 
Misc 
 
Misc(FFA As Double, StateMultiplier As Double)   
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Misc_Info record. 
   

Parameters: 
FFA – Finished Floor Area 
StateMultiplier – Factor for determining miscellaneous use –use 1 if unknown, 
NREL spreadsheet has default values for each state 

Returns: 
None 

Throws: 
None  

 
 
 
 
Occupancy 
 
Occupancy(Beds As Integer) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Occupancy_Info record. 
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Parameters: 
 Beds – Number of Bedrooms 
Returns: 

None 
Throws: 

None  
 
 
 
 
Range 
 
Range(RangeFuel As String) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Range_Info record. 
   

Parameters: 
RangeFuel – ‘Electric’ or ‘Gas’ or ‘Propane’ 

Returns: 
None 

Throws: 
None  

 
 
 
 
Refrigeration 
 
Refrigeration( ) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.Refrigeration_Info record. 
   

Parameters: 
None 

Returns: 
None 

Throws: 
None  

 
 
 
 
ConvertThermsToPropaneGal 
 
Double  ConvertThermsToPropaneGal(Therms As Double) 
 
This method calls  
   

Parameters: 
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Therms – The energy use in therms of the gas appliance 
Returns: 

Equivalent Gallons of Propane 
Throws: 

None  
 
 
 
 
Get_Appliances_Outputs 
 
TBA_BenchmarkAppliancesCalcOut  Get_Appliances_Outputs( ) 
 
This method returns all of the appliance characteristics for a given prototype home. 
   

Parameters: 
None 

Returns: 
Record consisting of outputs of Appliance Calculations: 
TBA_BenchmarkAppliancesCalcOut = record 
  Added_Elec_Annual_Use: Double; 
  Dishwasher_HWGallonsPerDay: Double; 
  Clotheswasher_HWGallonsPerDay: Double; 
  CeilingFan_Info: TBAAppliance_Info; 
  ClothesWasher_Info: TBAAppliance_Info; 
  Dishwasher_Info: TBAAppliance_Info; 
  Dryer_Info: TBAAppliance_Info; 
  Lighting_Info: TBAAppliance_Info; 
  Misc_Info: TBAAppliance_Info; 
  PoolPump_Info: TBAAppliance_Info; 
  Range_Info: TBAAppliance_Info; 
  Refrigeration_Info: TBAAppliance_Info; 
  Occupancy_Info: TBAAppliance_Info; 
  People: Single; 
  SensiblePerPerson: Single; 
  LatentPerPerson: Single; 
  PlugInLighting_Info: TBAAppliance_Info; 
 
 
where  
  TBAAppliance_Info = record 
  Curr_Appliance_ID: Integer; alphabetical from 1 -9 (clotheswasher is 1,   
refrigeration is 9) 
  Curr_Annual_Use: Single; annual energy use  
  Curr_Peak_Demand: Single; largest hourly value of energy use 
  Curr_Percent_Released: Single; total percentage of energy released inside the 

home 
  Curr_Latent_Released: Single;  percentage of total energy released as latent 

energy inside the home 
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  Curr_Sensible_Released: Single; percentage of total energy released as sensible 
energy inside the home 

  Curr_Annual_Use_Type: WideString; units of annual energy use 
  Curr_Peak_Demand_Type: WideString; units of peak demand 
  Curr_Appliance_Type: WideString; ‘Clotheswasher’, or ‘Dryer’, 

or…,’Refrigeration’ 
  Curr_Name: WideString; 'BA_Benchmark 2006' 
  Curr_Hour: array[1..24] of Single;  fraction of peak demand for each hour 
 

Throws: 
None  

 
 
 
 
PlugInLighting 
 
PlugInLighting(FFA As Double) 
 
This method populates the TBA_BenchmarkAppliancesCalcOut.PLugInLighting_Info record. 
   

Parameters: 
FFA – Finished Floor Area 

Returns: 
None 

Throws: 
None  
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BA_BenchmarkEquipment 
 
Description: This class contains the methods to determine the benchmark home heating, 
cooling, air distribution, water heating and mechanical ventilation characteristics. 
 
 
Method Summary 

 

BA_Benchmark2006EquipmentMaster(ambientannualtemp As 
Single, baths As Single, FFA As Single, Cond_Area As Single, 
HeatCFM As Single, CoolCFM As Single, DHWdeliverytemp As 
Single, DHWsupplytemp As Single, HeatingCapacity As Single, 
CoolingCapacity As Single, Beds As Integer, Stories As Integer, 
Nreturns As Integer, NumHotWaterSystems As Integer, 
NumHeatingSystems As Integer, BasementConditioned As 
Boolean, CrawlSpaceConditioned As Boolean, 
PredominantFoundation As String, Heating_Fuel_Type As String, 
HotWater_Primary_Type As String, HotWater_Location As 
String, Heating_Type As String, HotWater_FuelType As String) 

 
Ducts(FFA As Single; Nreturns As Integer, Stories As Integer; 
BasementConditioned As Boolean, CrawlSpaceConditioned As 
Boolean, PredominantFoundation As String) 

 Cooling ( ) 

 Heating(NumHeatingSystems As Integer, Heating_Fuel_Type As 
String, Heating_Type As String) 

 

WaterHeating(HotWater_Primary_Type As String, 
HotWater_FuelType As String, HotWater_Location As String, 
Beds As Integer, NumHotWaterSystems As Integer, baths As 
Single, ambientannualtemp As Single, DHWdeliverytemp As 
Single, DHWsupplytemp As Single) 

 BAHeatingEquip(HeatTypeIn As String, FuelType As String, 
HeatEff As Single, HeatTypeOut As String) 

Single BACoolingEquip(CoolType As String, FuelType As String) 

Single BAWaterHeatingEF(WaterHeatingType As String, FuelType As 
String, WaterHeatingCap As Single) 

Single BAWaterHeatingRE(FuelType As String) 

Single BAWaterHeatingStorageVolume(Curr_Fuel_Type As String, 
Beds As Integer, baths As Single) 

Single BAWaterHeatingBurnerCapacity(Curr_Fuel_Type As String, 
Beds As Integer, baths As Single) 

Single BACoolingSetPoint ( ) 

Single BAHeatingSetPoint ( ) 



 46

Single BAMechVentCFMFlow(CFA As Single, Beds As Integer) 

Single BAMechVentPower(CFA As Single, Beds As Integer) 

 
WaterHeatingGallonsPerDaybyMonth(Beds As Integer, 
ambientannualtemp As String, baths As String, deliverytemp As 
String, supplytemp As String) 

TBA_Benchmark
EquipCalcOut Get_Equipment_Output ( ) 

 

Set_AmbientMonthTemp(Jan As Single, Feb As Single, Mar As 
Single, Apr As Single, May As Single, Jun As Single, Jul As 
Single, Aug As Single, Sep As Single, Oct As Single, Nov As 
Single, Dec As Single)   

Single FindHighest(ArraySize As Integer) 

Single FindLowest(ArraySize As Integer) 

 
 
 
 
 
 
 

Method Detail 
 
BA_Benchmark2006EquipmentMaster 
 
BA_Benchmark2006EquipmentMaster(ambientannualtemp As Single, baths As Single, FFA 
As Single, Cond_Area As Single, HeatCFM As Single, CoolCFM As Single, DHWdeliverytemp 
As Single, DHWsupplytemp As Single, HeatingCapacity As Single, CoolingCapacity As Single, 
Beds As Integer, Stories As Integer, Nreturns As Integer, NumHotWaterSystems As Integer, 
NumHeatingSystems As Integer, BasementConditioned As Boolean, CrawlSpaceConditioned As 
Boolean, PredominantFoundation As String, Heating_Fuel_Type As String, 
HotWater_Primary_Type As String, HotWater_Location As String, Heating_Type As String, 
HotWater_FuelType As String) 
 
This method calls each equipment component routine. 
   

Parameters: 
ambientannualtemp – the annual average outdoor temperature in degrees F 
baths – number of bathrooms 
FFA – finished floor area 
Cond_Area – the conditioned floor area 
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DHWdeliverytemp -  
DHWsupplytemp -  
Beds – Number of Bedrooms  
Stories – Number f Stories 
Nreturns – Number of returns 
NumHotWaterSystems – Number of hot water systems 
NumHeatingSystems – Number of heating systems 
BasementConditioned – True if basement is conditioned 
CrawlSpaceConditioned – True if crawlspace is conditioned 
PredominantFoundation – ‘Basement’ or ’Crawlspace’ or’Slab’ 
Heating_Fuel_Type – ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil’ 
HotWater_Primary_Type -  ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil” 
HotWater_Location -  
Heating_Type -  
HotWater_FuelType - ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil” 
 

Returns: 
None 

Throws: 
None  

 
 
 
Ducts 
 
Ducts(FFA As Single; Nreturns As Integer, Stories As Integer; BasementConditioned As 
Boolean, CrawlSpaceConditioned As Boolean, PredominantFoundation As String) 
 
This method calculates the Duct_info and air handler and other duct parameters.  
   

Parameters: 
 FFA – Finished Floor Area 

Nreturns – Number of returns 
Stories – Number of stories 
BasementConditioned – ‘True’ if conditioned 
CrawlSpaceConditioned – ‘True’ if conditioned 
PredominantFoundation – ‘Basement’ or ’Crawlspace’ or’Slab’ 

Returns: 
None 

Throws: 
None  

 
 
 
 
Cooling 
 
Cooling ( ) 
 
This method calculates the cooling equipment efficiency paremters 
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Parameters: 

None 
Returns: 

None 
Throws: 

None  
 
 
 
 
Heating 
 
Heating(NumHeatingSystems As Integer, Heating_Fuel_Type As String, Heating_Type As 
String) 
 
 
This method will base the heating system parameters based on the input of fuel and heating type. 
IF the number of heating systems is 0, it does notset the parameters. 
   

Parameters: 
NumHeatingSystems – The number of heating systems 
Heating_Fuel_Type – The type of fuel used for the heating system Electric’ or 
‘Gas’ or ‘Propane’ or ’Oil’ 
Heating_Type – For non-electric fuel systems the efficiency will change if ‘Heat 
pump’ or ‘Hydronic’ is part of the heating type entered 

Returns: 
None 

Throws: 
None  

 
 
 
 
WaterHeating 
 
WaterHeating(HotWater_Primary_Type As String, HotWater_FuelType As String, 
HotWater_Location As String, Beds As Integer, NumHotWaterSystems As Integer, baths As 
Single, ambientannualtemp As Single, DHWdeliverytemp As Single, DHWsupplytemp As 
Single) 
 
This method calculates the water heating parameters for the home 
   

Parameters: 
HotWater_Primary_Type -  
HotWater_FuelType – ‘Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil” 
HotWater_Location – Location of the hot water system 
Beds – Number of bedrooms 
NumHotWaterSystems – Number of hot water systems 
baths – Number of bathrooms 
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ambientannualtemp – Annual average outdoor temperature, degrees F 
DHWdeliverytemp – Delivery temperature, degrees F 
DHWsupplytemp – Supply temperature, degrees F 

Returns: 
None 

Throws: 
None  

 
 
 
 
BAHeatingEquip 
 
BAHeatingEquip(HeatTypeIn As String, FuelType As String, HeatEff As Single, HeatTypeOut 
As String) 
 
This method calculates the heating type and heatingefficiency 
   

Parameters: 
HeatTypeIn - For non-electric fuel systems the efficiency will change if ‘Heat 
pump’ or ‘Hydronic’ is part of the heating type entered 
FuelType - – The type of fuel used for the heating system Electric’ or ‘Gas’ or  
‘Propane’ or ’Oil’ 

Returns: 
HeatEff – The efficiency of the hating system 
HeatTypeOut – The type of system entered unless the fuel type is electric in 
which case it will return ‘Electric Heat Pump’ 

Throws: 
None  

 
 
 
 
BAWaterHeatingEF 
 
Single BAWaterHeatingEF(WaterHeatingType As String, FuelType As String, 
WaterHeatingCap As Single) 
 
This method calculates the water heating efficiency 
   

Parameters: 
WaterHeatingType –  
FuelType - Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil” 
WaterHeatingCap – The capacity of the water heating tank 

Returns: 
Water Heating Efficiency 

Throws: 
None  
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BAWaterHeatingRE 
 
Single BAWaterHeatingRE(FuelType As String) 
 
This method calculates the recovery efficiency 
   

Parameters: 
FuelType - Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil” 

Returns: 
Water Heating Recovery Efficiency 

Throws: 
None  

 
 
 
 
BAWaterHeatingStorageVolume 
 
Single BAWaterHeatingStorageVolume(Curr_Fuel_Type As String, Beds As Integer, baths As 
Single) 
 
This method  
   

Parameters: 
Curr_Fuel_Type – ‘Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil” 
Beds – Number of bedrooms  
baths –Number of bathrooms 

Returns: 
None 

Throws: 
None  

 
 
 
 
BAWaterHeatingBurnerCapacity 
 
Single BAWaterHeatingBurnerCapacity(Curr_Fuel_Type As String, Beds As Integer, baths 
As Single) 
 
This method calculates the burner capacity 
   

Parameters: 
Curr_Fuel_Type – ‘Electric’ or ‘Gas’ 
Beds -  Number of bedrooms 
baths – number of bathrooms 

Returns: 
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BAWaterHeatingBurnerCapacity in Btu 
Throws: 

None  
 
 
 
 
BACoolingSetPoint 
 
Single BACoolingSetPoint ( ) 
 
This method returns the BA cooling temperature in degrees F 
   

Parameters: 
None 

Returns: 
BACoolingSetPoint 

Throws: 
None  

 
 
 
 
BAHeatingSetPoint 
 
Single BAHeatingSetPoint ( ) 
 
This method  
   

Parameters: 
None 

Returns: 
BAHeatingsSetPoint 

Throws: 
None  

 
 
 
 
BAMechVentCFMFlow 
 
Single BAMechVentCFMFlow(CFA As Single, Beds As Integer) 
 
This method returns the cfm of the benchmark mechanical vent system 
   

Parameters: 
CFA – conditioned floor area 
Beds – number of bedrooms 

Returns: 
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BANechVebtCFMFlow  
Throws: 

None  
 
 
 
 
BAMechVentPower 
 
Single BAMechVentPower(CFA As Single, Beds As Integer) 
 
This method returns the Wattage of the benchmark mechanical vent system 
   

Parameters: 
CFA – conditioned floor area 
Beds – number of bedrooms 

Returns: 
BAMechVentPower in Watts 

Throws: 
None  

 
 
 
 
WaterHeatingGallonsPerDaybyMonth 
 
WaterHeatingGallonsPerDaybyMonth(Beds As Integer, ambientannualtemp As String, baths 
As String, deliverytemp As String, supplytemp As String) 
 
This method calculates the water use per day for each end-use and returns the annual total 
averaage 
   

Parameters: 
Beds – number of bedrooms 
ambientannualtemp – average anuual outdoor temperature, degrees F 
baths – number of bathrooms 
deliverytemp – hot water delivery temperature, degrees F 
supplytemp –hot water delivery temperature, degrees F 

Returns:  None 
Throws: 

None  
 
 
 
 
Get_Equipment_Output 
 
TBA_BenchmarkEquipCalcOut  Get_Equipment_Output ( ) 
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This method returns all of the equipment characteristics for a given prototype home. 
   

Parameters: 
None 

Returns: 
Record consisting of Equipment outputs 
TBA_BenchmarkEquipCalcOut = record 
  Air_Handler_Location: WideString; 
  Duct_Material: WideString; 
  Supply65: WideString; 
  Supply35: WideString; 
  Air_Handler_kWhperCFM: Single; 
  Conditioned_Supply_R_Value: Single; 
  Conditioned_Return_R_Value: Single; 
  Total_Leakage_fraction: Single; 
  Total_Leakage_CFMHeat: Single; 
  Total_Leakage_CFMCool: Single; 
  DHWRecoveryEfficiency: Single; 
  DHWBurnerCapacity: Single; 
  MechVentCFMFlow: Single; 
  MechVentAnnualkWh: Single; 
  HeatingSetPoint: Single; 
  CoolingSetPoint: Single; 
  WaterUse: array[1..13] of Single; 
  ShowerandBath: array[1..13] of Single; 
  Sink: array[1..13] of Single; 
  Dishwasher: array[1..13] of Single; 
  Clotheswasher: array[1..13] of Single; 
  BADuct_Info: TBADuct_Info; 
  BACool_Info: TBACool_Info; 
  BAHeat_Info: TBAHeat_Info; 
  BAWater_Info: TBAWater_Info; 
end; 
 

Throws: 
None  

 
 
 
 
 
Set_AmbientMonthTemp 
 
Set_AmbientMonthTemp(Jan As Single, Feb As Single, Mar As Single, Apr As Single, May As 
Single, Jun As Single, Jul As Single, Aug As Single, Sep As Single, Oct As Single, Nov As 
Single, Dec As Single)   
 
This method sets the ambient month temperatures. 
   

Parameters: 
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Jan – Ambient temperature of January 
Feb - Ambient temperature of February 
Mar - Ambient temperature of March 
Apr - Ambient temperature of April 
May - Ambient temperature of May 
Jun - Ambient temperature of June 
Jul - Ambient temperature of July 
Aug - Ambient temperature of August 
Sep - Ambient temperature of September 
Oct - Ambient temperature of October 
Nov - Ambient temperature of November 
Dec - Ambient temperature of December 

Returns: 
None 

Throws: 
None  

 
 
 
 
FindHighest 
 
Single FindHighest 
 
This method finds the highest month temperature. 

 Parameters: 
None 

Returns: 
Highest value from the array 

Throws: 
None  

 
 
 
 
FindLowest 
 
Single FindLowest(ArraySize As Integer) 
 
This method finds the lowest month temperature. 
   

Parameters: 
None 

Returns: 
Lowest value from the array 

Throws: 
None  
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BAMiscCalc 
 
Description: The class contains items that may be used by multiple other classe. 
 
 
Method Summary 

Single MaxReal(a As Single, b As Single) 

Single MinReal(a As Single, b As Single) 

Boolean AllCapsCompare(MyString1 As String, MyString2 As String) 
 
 

Method Detail 
 
MaxReal 
 
Single MaxReal(a As Single, b As Single) 
 
This method returns the larger of two values. 
 
   

Parameters: 
a – any real number 
b – any real number 

Returns: 
MaxReal  

Throws: 
None  

 
 
MinReal 
 
Single MinReal(a As Single, b As Single) 
 
This method returns the smallest of two vlues 
 
   

Parameters: 
a – any real number 
b – any real number 

Returns: 
MinReal 

Throws: 
None  
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AllCapsCompare 
 
boolean AllCapsCompare(MyString1 As String, MyString2 As String) 
 
This method makes a case insensitive comparison of two strings and returns true if thestrings 
match 
 
   

Parameters: 
MyString1 – any string 
MyString2 –any string 

Returns: 
AllCapsCompare 

Throws: 
None  
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Appendix B. Water Heating Temperature Data 
 
ID Year Day Time Sec 

Temp 
(F) 

104 2005 278 1649 1 109.3 

104 2005 278 1649 2 109.2 

104 2005 278 1649 3 109.8 

104 2005 278 1649 4 110.7 

104 2005 278 1649 5 110.6 

104 2005 278 1649 6 109.4 

104 2005 278 1649 7 110.4 

104 2005 278 1649 8 110.5 

104 2005 278 1649 9 110.5 

104 2005 278 1649 10 110.7 

104 2005 278 1649 11 107.8 

104 2005 278 1649 12 111 

104 2005 278 1649 13 111.1 

104 2005 278 1649 14 111.3 

104 2005 278 1649 15 111.3 

104 2005 278 1649 16 111.5 

104 2005 278 1649 17 111.5 

104 2005 278 1649 18 111.7 

104 2005 278 1649 19 110.7 

104 2005 278 1649 20 111.6 

104 2005 278 1649 21 111.6 

104 2005 278 1649 22 111.7 

104 2005 278 1649 23 111.6 

104 2005 278 1649 24 111.7 

104 2005 278 1649 25 111.7 

104 2005 278 1649 26 111.7 

104 2005 278 1649 27 110.7 

104 2005 278 1649 28 111.7 

104 2005 278 1649 29 111.6 

104 2005 278 1649 30 109.7 

104 2005 278 1649 31 111.6 

104 2005 278 1649 32 111.7 

104 2005 278 1649 33 111.7 

104 2005 278 1649 34 111.7 

104 2005 278 1649 35 111.7 

104 2005 278 1649 36 111.8 

104 2005 278 1649 37 111.8 

104 2005 278 1649 38 111.9 

104 2005 278 1649 39 111.8 

104 2005 278 1649 40 110.2 

104 2005 278 1649 41 110.8 

104 2005 278 1649 42 112 

104 2005 278 1649 43 111.8 

104 2005 278 1649 44 112.1 

104 2005 278 1649 45 112.1 
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104 2005 278 1649 46 112.2 

104 2005 278 1649 47 112.3 

104 2005 278 1649 48 112.5 

104 2005 278 1649 49 112.6 

104 2005 278 1649 50 112.8 

104 2005 278 1649 51 112.2 

104 2005 278 1649 52 113.3 

104 2005 278 1649 53 113.7 

104 2005 278 1649 54 114.2 

104 2005 278 1649 55 114.6 

104 2005 278 1649 56 115.3 

104 2005 278 1649 57 116 

104 2005 278 1649 58 117 

104 2005 278 1649 59 116.7 

104 2005 278 1649 60 118.9 

104 2005 278 1650 1 119.9 

104 2005 278 1650 2 121.1 

104 2005 278 1650 3 120.8 

104 2005 278 1650 4 123.2 

104 2005 278 1650 5 124.1 

104 2005 278 1650 6 125.1 

104 2005 278 1650 7 126 

104 2005 278 1650 8 126.7 

104 2005 278 1650 9 127.2 

104 2005 278 1650 10 127.9 

104 2005 278 1650 11 128.2 

104 2005 278 1650 12 128.6 

104 2005 278 1650 13 128.8 

104 2005 278 1650 14 129.1 

104 2005 278 1650 15 128.2 

104 2005 278 1650 16 129.3 

104 2005 278 1650 17 129.3 

104 2005 278 1650 18 129.5 

104 2005 278 1650 19 129.5 

104 2005 278 1650 20 129.6 

104 2005 278 1650 21 129.6 

104 2005 278 1650 22 129.6 

104 2005 278 1650 23 131.2 

104 2005 278 1650 24 129.7 

104 2005 278 1650 25 129.1 

104 2005 278 1650 26 128.3 

104 2005 278 1650 27 129.8 

104 2005 278 1650 28 129.7 

104 2005 278 1650 29 129.6 

104 2005 278 1650 30 129.8 

104 2005 278 1650 31 131.4 

104 2005 278 1650 32 130 

104 2005 278 1650 33 130 

104 2005 278 1650 34 130.2 
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104 2005 278 1650 35 130.2 

104 2005 278 1650 36 130.3 

104 2005 278 1650 37 130.3 

104 2005 278 1650 38 130.4 

104 2005 278 1650 39 130.7 

104 2005 278 1650 40 130.6 

104 2005 278 1650 41 130.6 

104 2005 278 1650 42 130.7 

104 2005 278 1650 43 130.7 

104 2005 278 1650 44 130.8 

104 2005 278 1650 45 130.8 

104 2005 278 1650 46 130.9 

104 2005 278 1650 47 128.3 

104 2005 278 1650 48 131 

104 2005 278 1650 49 131 

104 2005 278 1650 50 129.8 

104 2005 278 1650 51 128.9 

104 2005 278 1650 52 131.2 

104 2005 278 1650 53 131 

104 2005 278 1650 54 131.1 

104 2005 278 1650 55 129.6 

104 2005 278 1650 56 131.1 

104 2005 278 1650 57 131.1 

104 2005 278 1650 58 131.1 

104 2005 278 1650 59 131 

104 2005 278 1650 60 131.1 

104 2005 278 1651 1 131 

104 2005 278 1651 2 131.2 

104 2005 278 1651 3 130.9 

104 2005 278 1651 4 131.1 

104 2005 278 1651 5 131 

104 2005 278 1651 6 131.1 

104 2005 278 1651 7 131 

104 2005 278 1651 8 131.1 

104 2005 278 1651 9 131 

104 2005 278 1651 10 131.1 

104 2005 278 1651 11 131.4 

104 2005 278 1651 12 131.1 

104 2005 278 1651 13 131.1 

104 2005 278 1651 14 129.2 

104 2005 278 1651 15 131.1 

104 2005 278 1651 16 131.1 

104 2005 278 1651 17 131 

104 2005 278 1651 18 131 

104 2005 278 1651 19 129.1 

104 2005 278 1651 20 131 

104 2005 278 1651 21 130.9 

104 2005 278 1651 22 131 

104 2005 278 1651 23 130.8 
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104 2005 278 1651 24 130.9 

104 2005 278 1651 25 130.8 

104 2005 278 1651 26 130.8 

104 2005 278 1651 27 129.5 

104 2005 278 1651 28 130.8 

104 2005 278 1651 29 130.6 

104 2005 278 1651 30 130.8 

104 2005 278 1651 31 130.7 

104 2005 278 1651 32 130.8 

104 2005 278 1651 33 130.6 

104 2005 278 1651 34 130.7 

104 2005 278 1651 35 130.2 

104 2005 278 1651 36 130.8 

104 2005 278 1651 37 130.5 

104 2005 278 1651 38 128.8 

104 2005 278 1651 39 130.8 

104 2005 278 1651 40 130.9 

104 2005 278 1651 41 130.8 

104 2005 278 1651 42 130.9 

104 2005 278 1651 43 129.3 

104 2005 278 1651 44 131.1 

104 2005 278 1651 45 131 

104 2005 278 1651 46 131.2 

104 2005 278 1651 47 131.2 

104 2005 278 1651 48 131.3 

104 2005 278 1651 49 131.3 

104 2005 278 1651 50 131.4 

104 2005 278 1651 51 130.2 

104 2005 278 1651 52 131.4 

104 2005 278 1651 53 131.4 

104 2005 278 1651 54 131.4 

104 2005 278 1651 55 131.5 

104 2005 278 1651 56 131.5 

104 2005 278 1651 57 131.5 

104 2005 278 1651 58 131.4 

104 2005 278 1651 59 131.5 

104 2005 278 1651 60 130.4 
 

 
 
 
 


