
 i

Improving the Accuracy and Speed for
Building America Benchmarking

FSEC-CR-1651-06

September 27, 2006

Submitted to:

U.S. Department of Energy
Cooperative Agreement No.

DE-FC26-99GO10478

Authors:

Robin Vieira
Lixing Gu

Raju Sen Sharma
Carlos Colon
Danny Parker

CONTRACT REPORT

 i

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government, nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States government or any agencies
thereof.

ACKNOWLEDGMENTS

This work is sponsored, in large part, by the US Department of Energy (DOE), Office of
Energy Efficiency and Renewable Energy, Building Technologies Program under
cooperative agreement number DE-FC26-99GO10478. This support does not constitute
an endorsement by DOE of the views expressed in this report.

We appreciate the encouragement and support from Mr. George James, Mr. Ed Pollock
and Mr. Bill Haslebacher of DOE.

 ii

Table of Contents

Abstract.. 1
Executive Summary .. 1
1.0 Introduction... 3
2.0 BA Benchmark ToolKit algorithms .. 3

2.1 Envelope ... 3
2.2 Equipment ... 4
2.3 Appliances... 5
2.4 Miscellaneous algorithms ... 5
2.5 The ToolKit Application for Testing .. 5

3.0 A simplified hot water distribution system model ... 7
3.1 Introduction... 7
3.2 Simplified model development ... 8
3.3 Model validation ... 12
3.4 Model application ... 13
3.5 Simplified Hot Water Distribution Modeling Conclusions 16

4.0 Ventilation models .. 17
4.1 Expanded ventilation capabilities ... 17
4.2 Reporting Ventilation Fan Energy .. 17
4.3 Ventilation fan energy use example.. 18

4.3.1 Continuous Ventilation Systems.. 19
4.3.2 Runtime Ventilation Systems .. 19
4.3.3. Fan Energy Use Explains Overall Energy Use Changes 21
4.3.4. Fan Heat Energy is Extra Load... 21

5.0 Conclusions .. 21
Appendix A. Building America Benchmark Toolkit Software Description Details 23
Appendix B. Water Heating Temperature Data…………………………………………57

 1

Abstract

FSEC has developed capabilities for modelers to more accurately and more readily
perform Building America energy analysis through three efforts:

• Developing a software toolkit for creating the Building America Benchmark
home for use by software programmers

• Developing a simple hot water distribution algorithm for potential inclusion in
future Building America efforts

• Simulating different mechanical ventilation options for homes.

Executive Summary

The Building America Benchmarking process is time consuming. One must first enter
the parameters of the prototype home design into the Building America Spreadsheet tool1
to create the parameters of the Building America benchmark home and then use detailed
software products to simulate both the benchmark home and the prototype home and then
enter the results from these simulations into the spreadsheet to determine the resulting %
improvement for the prototype.

To reduce this effort, FSEC has created a BA Toolkit that allows programmers to
incorporate calls to functions and procedures that produce the Building America
Benchmark characteristics. This will enable programmers to more easily incorporate
Benchmark analysis into their software. The toolkit has been tested against the
Department of Energy developed Building America Spreadsheet Tool and found to
produce the same results.

The Benchmarking process goes into great detail to determine hot water use for the
benchmark and the prototype homes. However, the benchmark process has not included
hot water distribution effects, which can be larger than many of the water use differences
currently painstakingly calculated. FSEC has developed a simple routine and verified it
against measured data as a method to simulate distribution effects to a reasonable degree
of accuracy. It shows that typical losses in a Miami home may represent an increase of
2.4 % in hot water energy use and also a slight increase in cooling energy. This routine
can be incorporated into or run separately from other software should the Building
America program decide to include this element.

FSEC has also accomplished another enhancement for Building America teams that
facilitates extraction of ventilation fan energy use from DOE reports. As part of this
effort, but outside of this funding, FSEC also added a capability within EnergyGauge
USA to simulate mechanical air handler ventilation with a controller that closes a damper
after a certain amount of runtime or turn on the blower to assure a minimum amount of
runtime, or both. This report presents simulation results for controlling mechanical

1 Building America Analysis Spreadsheet, dated 05.03/06 found online at

http://www.eere.energy.gov/buildings/building_america/pa_resources.html

 2

ventilation via nine strategies. Fresh air provided by systems as well as energy use due to
ventilation air flow and fan energy consumption can vary significantly depending
oncontrol characteristics. Simple runtime vent systems may only bring in air 20% to
25% of the time on an annual average basis compared to continuous vent systems and if
designed for small quantities of air will likely not provide much more outdoor air than
simple infiltration in the wintertime when the natural driving forces are large. Ensuring
that a runtime vent system operates 25% of every hour results in increased energy use
due to increased fan use (4% and 13% of heating and cooling energy, respectively) in the
modeled St. Louis example used in this study.

In summary, FSEC has added capabilities for modelers to more accurately and more
readily perform energy analysis for Building America homes. These algorithms are listed
in the report text and the appendix. Please contact the first author Rob Vieira
(robin@fsec.ucf.edu) to obtain these algorithms in computer friendly format.

 3

1.0 Introduction

The Building America program has developed their unique energy analysis procedure.
This procedure is different from the HERS and Energy Star procedures and different
from the IECC code. To help teams accomplish the energy analysis, the National
Renewable Energy Laboratory (NREL) has developed a spreadsheet that allows users to
enter prototype characteristics and obtain inputs to building simulation programs for
software tools. This spreadsheet has been improved over time and is a powerful tool.
However, there are still some potential problems with the process. Each user has to take
the outputs and enter them into a building simulation tool. This is an additional process
and requires instructions for each type of software tool used. Therefore, there is a
reasonable chance for error or at least inconsistency even if the same spreadsheet and
building simulation programs are implemented by two users. In an effort to improve
consistency and accuracy, FSEC set out to develop a stand-alone benchmark tool that will
allow programmers to obtain the benchmark home characteristics and incorporate them
into their software. FSEC also set out to improve mechanical ventilation modeling
options and hot water distribution analysis.

2.0 BA Benchmark ToolKit algorithms

After considering adding a number of features, and starting with large building decks and
other options, the FSEC team decided to simply code the spreadsheet benchmark
information with a few choices as to how to obtain the outputs. This method was chosen
as it required the smallest number of inputs and as such may be more readily used. The
program includes flexibility that will allow for calling each component routine so if
someone is experimenting with new benchmarks or building codes, they could choose to
use portions of the toolkit and program some new portions.

The BA benchmark algorithms are being delivered with a COM object2 for easy access
within most software tools. Four units were coded to produce the BA benchmark
building/spreadsheet procedures – one for the envelope, one for the HVAC and water
heating equipment, one for the appliances and one with some common math-type
routines. This section of the report provides an overview of each program unit developed
and assumes the reader has an understanding of the benchmark building procedure.
Detailed input and output descriptions are located in Appendix A. For full understanding
of the Building America Benchmark requirements the reader is encouraged to view the
documents at:
http://www.eere.energy.gov/buildings/building_america/pa_resources.html

2.1 Envelope

2 Component Object Model (COM) is a Microsoft platform for software components introduced by
Microsoft in 1993. It is used to enable interprocess communication and dynamic object creation in any
programming language that supports the technology

 4

Programmers may call a master envelope procedure that calls each envelope component
routine and returns all of the benchmark home envelope characteristics for a given
prototype home. This routine requires just ten inputs. It produces 29 outputs (See
Appendix A for details on inputs and outputs), some include string fields which may not
be needed for software programs. For example, based on the benchmark home output
characteristics of SHGC and U-value, the BA-ToolKit will provide an estimate of the
glass-type (Single, double, low-e double or low-e triple). For very simple programs, or
complicated programs that model the sunlight through each glass layer this may be
needed, as opposed to just the U-value and SHGC.

Alternatively to using the master envelope procedure, programmers can call each
envelope component procedure or function. Thus, if they just wanted to know the
window U-value for a home they could call that routine, which only requires the heating
degree days to obtain the window U-value. Although it is envisioned that calling the
master unit is easier, there may some programmers who prefer the component approach
because of the way they present data or write building decks.

A helpful routine is included in the envelope section that is not called from the master as
it would have required two additional inputs per assembly. The GetInsRValue routine
calculates the cavity insulation R-value based on parallel heat transfer principles for an
assembly. Given the overall U-value, the stud R-value and framing fraction and the R-
value of the components in series with both the stud and the cavity insulation, the
function returns the cavity insulation R-value. The cavity insulation is often used to
describe an assembly, e.g, “..the house has R-11 walls, R-30 ceiling, etc.” even though
the total R-value of the assembly will be a different value. The BA benchmark routines as
well as most performance based building codes simply provide an overall assembly U-
value. This routine allows a programmer who knows the characteristics of the typical
building assembly and has calculated the overall U-value using the BA-ToolKit to
determine the cavity R value for the benchmark home. It should prove useful for building
decks as well as any simple building programs.

2.2 Equipment

The equipment unit includes procedures for determining the benchmark home heating,
cooling, air distribution and mechanical ventilation characteristics. The master routine
requires 23 inputs. The master unit will call each of the component units once. As such, it
is not recommended for multiple system homes. For those homes, calling each
component separately is recommended. For example, the Benchmark heating
characteristics will change if the prototype has an electric or gas system. The type of
heating system is a required input. Interestingly, the BA benchmark cooling system
procedure requires no inputs. The benchmark duct system requires the prototype home
finished floor area, the number of stories, the predominant foundation type, and the
number of returns.

The hot water calculation requires the monthly ambient temperatures and eight other
inputs. Unlike other reference homes, the BA benchmark requires a number of

 5

parameters to determine the hot water use per day. Other standards simply base it on the
number of bedrooms, but the BA benchmark computes an average monthly value based
on monthly average water mains, the hot water supply and delivery temperature, and
expected dishwasher, clotheswasher, sink and shower/tub schedules based on the number
of bedrooms as a surrogate for occupants.

The mechanical ventilation routines calculate the flow and power based on the number of
bedrooms and finished floor area.

Detailed descriptions of inputs required for each function are included in Appendix A.

2.3 Appliances

The BA-Toolkit calculates Building America energy use parameters for the following
appliances:

 Clotheswashers
 Dishwashers
 Dryers
 Hard-wired lighting
 Plug-in Lighting
 Range
 Refrigeration
 Miscellaneous (this represents non-lighting plug loads) and
 Occupants.

Similar to the envelope and equipment units, the appliance unit consists of a master and
individual calls. A home with a gas and electric dryer may need to call the individual
routines, however, some programs may only be set up for one of each appliance input.
Each appliance procedure returns a peak hour power use and a 24-hour fraction of peak
schedule, annual energy use and total, latent and sensible fraction of energy released to
the interior.

2.4 Miscellaneous algorithms

The BA-Misc unit contains simple math or comparison functions used by multiple other
units.

2.5 The ToolKit Application for Testing

The Building America ToolKit code was tested against the latest NREL spreadsheet for
all benchmark specifications. The test unit was written in Visual Basic Application as a
part of the spreadsheet. The test program uses the Building America Prototype Input
worksheet for inputs and the Calcs5 worksheet for weather data inputs. The BA-toolkit
outputs are written to the Benchmark Outputs Test worksheet. The outputs are then

 6

compared to the spreadsheet outputs to verify agreement. In order to aid a programmer,
the output variable names are given to the right of the cell where the test software will
produce the values.

 7

3.0 A simplified hot water distribution system model

3.1 Introduction

Water heating in the U.S. is a major component of total energy consumption in buildings.
In the residential sector water heating is about 11% of the total.3 The Department of
Energy (DOE) lists total primary energy consumption for residential water heating at
2.66 quads. Hot water use in residential buildings accounts for the second largest portion
of residential energy consumption in the U.S., second to the energy used for space
heating.

It has been estimated that, on average, hot water distribution losses can be in excess of
20% between storage and the end-use point.4 As energy efficiency in buildings
improves with technology advances and modern building practices, hot water heating
energy can now reach as much as 32% of the energy used on a high performance home.5
Although the efficiency of water heaters has been mandated by national standards, the
efficiency of the distribution system has gone unaddressed. As such, it appears that there
is much potential for energy savings in water heating systems by improving and
optimizing the design of hot water distribution systems (HWDS).

Many complex factors contribute to heat losses in a hot water distribution system. In
addition to the thermal conductivity of the pipe materials used in today’s construction
(i.e., copper, PEX and CPVC), the environment in which the pipe is routed plays an
important role. In a recent study for the CEC, ORNL performed detailed simulations of
typical HWDS installations and found significant line losses, especially in recirculating
systems. 6

Due to the complex heat losses of HWDS, models are needed to optimize HWDS by
reducing heat losses. There are three models currently used to simulate thermal
performance of hot water distribution systems: HWSim, ORNL-HWDS, and TRNSYS.

The HWSIM model,7 originally developed in 1991 as part of Davis Energy Group’s
(DEG) original hot water research for the California Energy Commission, has been used
since 1992 to develop hot water distribution loss assumptions in California’s Residential
Standards. The program has significant capabilities but also has shortcomings stemming

3 Guide for the Evaluation of Energy Savings Potential, Office of Building Technology, State and
Community Programs (BTS), Department of Energy, Industry Interactive Procurement Sysem (IIPS), <
http:/e-center.doe.gov>
4 California Energy Commission, Measure Analysis and Life-Cycle Cost (Part 1): 2005 California Building
Energy Efficiency Standards, P400-02-011, April 2002
5 Building America Experts Meeting Highlights Opportunities for Hot Water energy Savings, July 2004
<http://www.eere.energy.gov/buildings/building_america/rh_0704_home_improve.html>
6 Wendt, R., Baskin, E. and D. Durfee, “Evaluation of Residential Hot Water Distribution Systems by
Numeric Simulation”, ORNL, May 2004
7 Note: We could not find documentations related to HWSim publicly. The model information is extracted
from Scope of Work: Water Heaters and Hot Water Distribution System, April, 2005, led by Lawrence
Berkeley National Lab

 8

from the limited scope of the original development effort. In 2004, DEG obtained
funding to enhance the program. Key improvements to the model include the ability to
simulate distribution system performance under changing environmental conditions (can
adjust inlet cold water temperature and pipe environment temperatures on a monthly
basis), improved user interface, and enhanced heat loss algorithms.

ORNL has also developed a numerical model to estimate heat loss or gain from insulated
and non-insulated hot water pipes.8 The required inputs are pipe parameters, insulation
properties, and water flow rates. It calculates energy use, water consumption, and waiting
time at use points. The model has been used to evaluate impacts of alternative HWDS in
prototypes of California houses. The model includes thermal mass impacts from water,
piping and water flow rates. The model is limited to the study of hot water distribution
systems but could be incorporated into a whole building models like DOE-2 and
EnergyPlus.

Using the Transient Energy System Simulation Tool, TRNSYS,9 a simulation model was
developed by NAHB to estimate energy consumption for hot water systems and to further
simulate other system design options.10 The simulation model was calibrated with heat-
transfer coefficients determined by experimental results. The model requires water flow
rates and assumes no thermal mass impacts. However, it is a whole building approach
and is able to simulate interactions between a building and the HWDS. It was used to
evaluate the use of demand water heating equipment in conjunction with various hot
water piping configurations.

The first two models are used to study hot water distribution systems only and may not
meet Building America program requirements for a whole building approach. The third
model is a whole building approach; however, it does not include the important thermal
mass impacts. The present effort is to develop a simplified HWDS model that includes
dynamic impacts and which can be used in the DOE-2 program as an input function.

3.2 Simplified model development

The following simplifying assumptions are used in the model developed here:

• Water temperature is constant at a given cross section
• When a copper pipe is used, conductive resistance through the copper pipe wall is

assumed to be negligible
• Water and copper pipe have the same temperature at a given cross section.
• Water and copper pipe temperature is a function of distance from the hot water

source and the length of time the outlet (faucet or shower) is activated.

8 Wendt, R.; E. Baskin & D. Durfee, 2004, “Evaluation of residential hot water distribution systems by
numerical simulation,” Final report, Building Technology Center, Oak Ridge National Laboratory, Oak
Ridge, Tennessee
9 University of Wisconsin-Madison, Solar Energy Lab, http://sel.me.wisc.edu/TRNSYS/Default.htm
10 NAHB Research Center, Inc., 2002, “Domestic hot water system modeling for the design of energy
efficient systems,”

 9

• Water and copper pipe temperature is a function of time only for a period
following the time an outlet (faucet or shower) is deactivated.

• Insulation has no thermal capacity.
• Convective heat transfer coefficient on the air side of the at the external surface is

independent of temperature and time.
• Heat conduction in the water and tube in the axial direction is negligible.
• Water flow is assumed to be fully developed.

Simplified governing equation:

HWDS On

 (3-1)

where

•

m = Water flow rate [kg/s]
Cp,w = Water specific heat [J/kg.K]
Cp,p = Pipe specific heat [J/kg.K]
T = Pipe and water temperature [oC] = f(x,t)
T∞ = Surrounding air temperature where a pipe is located [oC]
ρw = Water density [kg/m3]
ρp = Pipe density [kg/m3]
Aw = Water flow area [m2]
Ap = Pipe cross section area [m2]
x = Pipe distance from hot water source [m]
τ = Time [s]
U = Overall heat transfer coefficient [W/m2.K]

∑+
=

j

j

o k
t

h

U
1

1

 (3-2)

where
ho = Heat transfer coefficient at the exterior pipe surface [W/m2.K]

 ti = Thickness at i-th layer of a pipe [m]
 ki = Thermal conductivity at i-th layer of a pipe [W/m.K]

Let

() (), , ,p w w p w w p p p p
T TmC C A C A UPT UPT
x

ρ ρ
τ ∞

∂ ∂⎡ ⎤+ + + =⎣ ⎦∂ ∂
&

,m p wa mC= &

() (), ,w p w w p p p pa C A C Aρ ρ ρ= +

 10

Boundary condition:
 T(0,t) = Tinlet [oC]
Initial condition:
 T(x,0) = Ta [oC]

Numerical solution

Since the governing equation is a partial differential equation with respect to distance and
time, the equation may be solved numerically using the following finite difference
method:

1, ,
,

* / * /
/ /

m i c i p
i c

m

a T x a T UPT
T

a x a UP
ρ

ρ

τ
τ

− ∞Δ + Δ +
=

Δ + Δ +
 (3-3)

where
 Ti,c = Water temperature at ith node and current time step
 Ti,p = Water temperature at ith node and previous time step

Δx = The distance between ith and (i+1)th node (L/200 is used in numerical
solution)

Δτ = The time difference between previous time step and current time step

Analytical solution

The Laplace transform was used to solve the first order partial differential equation. The
temperature distribution in a pipe is expressed below:

() () () ()
() () () () ()

, ,

, ,

, ,

(,) *exp *exp *
()

*exp
()

inlet a
p w w p w w p p p p

w p w w p p p p
a

p w w p w w p p p p

UPx UPtT x t T T T T T
mC C A C A

C A C A UPtu t x T T
mC C A C A

ρ ρ

ρ ρ

ρ ρ

∞ ∞ ∞

∞

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥= + − − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞+
− + − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

&

&

 (3-4)

where
 u(t) is a unit step function and may be written as

 11

() ()

() ()

, ,

, ,

0
()

1
()

w p w w p p p p

p w

w p w w p p p p

p w

C A C A
when t x

mC
u

C A C A
when t x

mC

ρ ρ

ρ ρ

⎛ ⎞+
= <⎜ ⎟

⎜ ⎟
= ⎜ ⎟

+⎜ ⎟= >⎜ ⎟
⎝ ⎠

&

&

Heat losses

[] [] [],
0 0 0 0 0

((,)) ((,)) ((,))
on init on

init

t t tL L L

loss on
t

Q UP T x T dx d UP T x T dx d UP T x T dx dτ τ τ τ τ τ∞ ∞ ∞= − = − + −∫ ∫ ∫ ∫ ∫ ∫

(3-5)
where

[] [] []
0 0 0 0 0

((,)) ((,)) ((,))

* *()* 1 e *()* e 1

()* e

m

init init init

m

init init

a
at t tL L

a
a

UP UPt t
a a

a m inlet init

UP
m

a

UP T x T dx d UP T x T dx d UP T x T dx d

a
L a T T a T T t

UP

a a
T T

UP

ρ

ρ

ρ ρ

τ

τ

ρ
ρ

ρ

τ τ τ τ τ τ∞ ∞ ∞

− −

∞ ∞

−

∞

− = − + − =

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎢ ⎥⎜ ⎟− − + − + − +⎢ ⎥

⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

−

∫ ∫ ∫ ∫ ∫ ∫

*(1) 1
initt

a
init

UP t
a

ρ

ρ

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦

(3-6)

[]
0 0

((,)) () ()*exp

()*() * 1 exp

on

init

t L L

on init inlet
t p

p on init inlet

p

UPxUP T x T dx d UP t t T T dx
mC

UPLmC t t T T
mC

τ τ∞ ∞

∞

⎛ ⎞
⎜ ⎟− = − − − =
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫ ∫ �

�

�

(3-77)
() (), ,

()
w p w w p p p p

init
p w

C A C A
t x

mC
ρ ρ+

=
&

(3-8)

HWDS Off

Mass flow rate is set to zero.

 12

 () (), ,w p w w p p p p
TC A C A UPT UPTρ ρ
τ ∞

∂⎡ ⎤+ + =⎣ ⎦ ∂
 (3-9)

Initial condition
 T(0) = Tinit

Analytical solution

() (), ,

() () *expinit
w p w w p p p p

UPtT t T T
C A C Aρ ρ∞

⎛ ⎞
= − −⎜ ⎟

⎜ ⎟+⎝ ⎠
 (3-10)

Heat losses

() () () (), , ,
, ,

* () * 1 exp *heat off w p w w p p p p init
w p w w p p p p

UPtQ C A C A T T L
C A C A

ρ ρ
ρ ρ∞

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎢ ⎥= + − − −⎜ ⎟⎣ ⎦ ⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 (3-11)
3.3 Model validation

Copper pipe at D = 0.75 in
Pipe length = 77 ft
Inlet temperature = 131 F
Initial temperature = 110 F
Water flow rate = 2 gpm
Ambient temperature = 90 F
On time: 180 sec
Off time: 5 minutes

Figure 1 shows measured11 and predicted temperatures at the shower outlet before and
during shower activation. The predicted temperatures were obtained from both numerical
and exact solutions. While the numerical approach is only an approximation, it is very
close to the measured data. The accuracy is dependent on magnitude of Δx and Δτ. Note
that the exact solution shows temperature jump at time = 63 seconds instead of a slow
temperature change. This occurs because, due to the simplifying assumptions, a unit
function is used. In this case, the numerical approach provides the better solution for
temperature prediction. From a total energy loss perspective, integrating temperature with
respect to time, both solutions provide similar results. The difference of the integrated
areas between 40 and 63 seconds is equal to the difference of the integrated areas
between 63 and 78 seconds. Hence, predicted energy losses are virtually identical for
both the numerical and exact solutions. The energy loss during the shower on time (180
seconds) is 6246.633 J from the numerical solution, and 6246.603 J from the exact
solution.

11 Data measured at a Brevard County Florida residence in April 2005. See Appendix B for data.

 13

Temperature at shower outlet during heating time

70
80
90

100
110
120
130
140

0 50 100 150

Time (sec)

T
(F

)

T_out (F) Measured Exact

Figure 1. Temperature comparison between measurement and prediction at shower outlet during
heating time

Figure 2 plots the temperature comparison between measurement and prediction at the
shower outlet after the shower is turned off. Since it is easy to obtain an exact solution,
no numerical approach is needed. As shown in the figure, the data match quite well.

Temperature at shower outlet during off time

70
80
90

100
110
120
130

0 3600 7200 10800 14400 18000 21600 25200 28800

Time (sec)

T
(F

)

T_out (F) Measured

Figure 2. Temperature comparison between measurement and prediction at shower outlet during
heating off period

3.4 Model application

Even though simplifying assumptions are used for the governing equations, the above
section shows that the model can predict the temperature distribution and energy losses
very well. The next step is to integrate the model into a whole building simulation
program, so that energy losses from HWDS becomes a part of energy uses in a whole

 14

building. DOE-2 is selected as a whole building simulation program. The input function
is named as DHWLOADS, and is called in the Zone section before zone calculation is
performed in the system computation. The required input values are:

• Tank size [gal]
• Tank water set temperature [oF]
• Pipe diameter [in]
• Pipe length [ft]
• Water flow rate [gal/min]
• Thermal resistance of pipe insulation [R]
• Copper pipe thickness [in]
• Zone temperature where the pipes are located
• Water use schedule

Calculation procedure uses exact solutions for both heating on and off periods in the
following steps:

1. Check if the water heater is on or off based on given water heater
operation schedule

2. If water heater is off, calculate pipe heat losses based on Eq. (11)
3. If water heater is on, calculate pipe heat losses based on Eq. (5) during on

time fraction, then calculate pipe heat losses based on Eq. (11) during off
time fraction

4. Save pipe temperature for next time step use
5. Add the pipe energy loss into DHWKW, variable for hot water heater

energy use

Note: When hot water heater is on during the whole hour, the pipe heat losses are
calculated for an hour. When the hot water heater is on for a fraction of the
hour, it is assumed that the heater is on from the beginning of the hour, and off
in the rest of the hour.

FUNCTION NAME = DHWLOADS ..
 ASSIGN IHR=IHR IDAY=IDAY IMO=IMO INILZE=INILZE
 DHWSIZ = DHWSIZ $SIZE OF DHW TANK$
 DHWGAL = DHWGAL $GAL/MIN WITH SKED= 60 GALS/DAY; VALUE SHOULD
BE 30 + 10 * BROOMS$
 DHWTMP = DHWTMP $DHW WATER SET TEMPERATURE$
 DHWD = DHWD $ HWD Pipe diameter [in]
 DHWL = DHWL $ HWD pipe length [ft]
 DHWQ = DHWQ $ HWD water flow rate [gpm]
 DHWR = DHWR $ Thermal resistance of pipe insulation
 DHWT = DHWT $ Copper pipe thickness [in]
 PI = 3.1415927
 DTP=XXX50 $ Undocumented trick to save pipe temperature $
 DHWLOSS = XXX51 $ Hot water heater loss
 TLIVIN = XXX24 $ Living Zone temp $
 QS = QS $ Sensible cooling loads $
 QL = QL .. $ heating coil loads $
 CALCULATE ..
C WATER HEATING CONSUMPTION BY HOUR IS DETERMINED

 15

 DHWFR= .2
 IF (IHR .EQ. 2) DHWFR=.1
 IF (IHR .EQ. 3) DHWFR=.0
 IF (IHR .EQ. 4) DHWFR=.0
 IF (IHR .EQ. 5) DHWFR=.0
 IF (IHR .EQ. 6) DHWFR=.2
 IF (IHR .EQ. 7) DHWFR=.4
 IF (IHR .EQ. 8) DHWFR=1.0
 IF (IHR .EQ. 9) DHWFR=.8
 IF (IHR .EQ. 10) DHWFR=.82
 IF (IHR .EQ. 11) DHWFR=.8
 IF (IHR .EQ. 12) DHWFR=.72
 IF (IHR .EQ. 13) DHWFR=.64
 IF (IHR .EQ. 14) DHWFR=.56
 IF (IHR .EQ. 15) DHWFR=.48
 IF (IHR .EQ. 16) DHWFR=.44
 IF (IHR .EQ. 17) DHWFR=.52
 IF (IHR .EQ. 18) DHWFR=.64
 IF (IHR .EQ. 19) DHWFR=.76
 IF (IHR .EQ. 20) DHWFR=.84
 IF (IHR .EQ. 21) DHWFR=.76
 IF (IHR .EQ. 22) DHWFR=.68
 IF (IHR .EQ. 23) DHWFR=.6
 IF (IHR .EQ. 24) DHWFR=.52

C Start to calculate pipe losses of hot water distribution system
 h_init = 0.0
 h_use = 0.0
 H_sby = 0.0
 t_init = 0.0
 t_on = 0.0
 DHWLOSS = 0.0
C GOTO 101
 DMCP = DHWQ*0.0000631*1000.0*4180.0
 DArea = (DHWD/2.0*0.0254)*(DHWD/2.0*0.0254)*3.1415927
 DRCpA = DArea*1000.0*4180.0+DHWD*0.0254*PI*DHWT*0.0254*390*8910
 DUP = 1.0/(1.0/7.5+DHWR*0.176)*DHWD*0.0254*PI
 DPL = DHWL*0.3048
 IF (IMO .eq. 1 .and. IDAY .eq. 1 .AND. IHR .EQ. 1) DTP = 25.0
 IF (IMO .eq. 1 .and. IDAY .eq. 1 .AND. IHR .EQ. 1) TLIVIN=23.8
 DTIN = (DHWTMP-32)/1.8
 DTAM = (TLIVIN-32)/1.8
 T_s = DTP
 IF (DHWFR .eq. 0) GOTO 85
C Initial stage
 t_init = DRCpA/DMCP*DPL
 h1 = DPL*DRCpA*(DTP-DTAM)*(1.0-exp(-DUP/DRCpA*t_init))
 h2 = DMCP*(DTIN-DTAM)*(t_init+DRCpA/DUP*(EXP(-DUP/DRCpA*t_init)
 & -1.0))
 h3 = (DTP-DTAM)*DRCPA*DMCP/DUP*(EXP(-DUP/DRCPA*t_init)*
 & (DUP/DRCPA*t_init+1.0)-1.0)
 h_init = h1+h2+h3
C Use stage
 t_on = DHWFR*DHWSIZ/DHWQ*60
 h_use = DMCP*t_on*(DTIN-DTAM)*(1.0-EXP(-DUP*DPL/DMCP))
 t_s = (DTAM+(DTIN-DTAM)*EXP(-DUP*DPL/DMCP))
85 T_off = 3600-t_init-t_on

 16

 if (T_off .LE. 0) goto 101
 DTP = (T_s-DTAM)*exp(-DUP/DRCPA*T_off)+DTAM
 H_sby = DRCPA*(T_s-DTAM)*(1.0-exp(-DUP/DRCPA*T_off))*DPL
 H_loss = (H_init+h_use+h_sby)/3600*3.4123
 DHWLOSS = (H_init+h_use)/3600/1000
86 QS = QS+H_loss
101 CONTINUE

 END
END-FUNCTION ..

The following table lists annual simulation results in a home in Miami with and without
HWDS losses, extracted from Report BEPS in units of MBtu. The domestic hot water
heater energy use increases 2.4%, and whole building annual energy use increases 1.6%
due to HWDS losses.

Table 1: Building energy performance summary with and without HDWS losses

Categary
HWDS
MBtu

No HWDS
MBtu

AREA LIGHTS 4 4
MISC EQUIPMT 13.6 13.6
SPACE HEAT 0 0
SPACE COOL 3.8 3.6
VENT FANS 1 1
DOMHOT WATER 8.6 8.4
TOTAL 31.1 30.6

Outside of this contract, FSEC will incorporate this algorithm for hot water distribution in
its software products.

3.5 Simplified Hot Water Distribution Modeling Conclusions

A simplified model to calculate HWDS energy losses, including thermal capacity impact,
was developed. The model was validated against limited measured data and was
successfully integrated into a whole building simulation program to calculate impact of
HWDS energy losses on whole building energy use.

Although the code is written as an input function of DOE-2, the input function can be
used as a general function to calculate HWDS losses, as long as required inputs are
available.

Due to limitation of DOE-2, the input function is only able to simulate straight piping of
the same size. However, the governing equations may be easily integrated into a network
model to calculate heat losses in a realistic HWDS.

 17

4.0 Ventilation models

4.1 Expanded ventilation capabilities

Recently, outside of this contract, FSEC expanded EnergyGauge ventilation control
capabilities by adding a max-time damper control for ventilation systems. This was
implemented through a function that runs the fan between a specified minimum and
maximum runtime. Exact implementation of this will depend on the simulation program
used. FSEC has added a private function to DOE-2 and the algorithm is incorporated into
that function. Building America teams can now choose the following mechanical
ventilation strategies:

• No mechanical ventilation provided
• Supply air fan
• Exhaust air fan
• Both supply and exhaust air fan (Fully or partially balanced)
• Enthalpy recovery ventilation system
• Runtime ventilation where ventilation air is provided only when heating and

cooling systems run (supply vent using the air handler unit)
• Runtime ventilation with a required minimum where the HVAC fan runs for a

minimum amount of time each hour
• Runtime ventilation where the outside air damper will close if the air handler

system has run a set amount of time during the hour
• A system that has a required minimum runtime and a closure for the outside air

damper after a maximum amount of time run that hour
• A system that provides no outdoor ventilation air but does provide a set

ventilation fan power (this is primarily for some reference building energy use
rule sets).

4.2 Reporting Ventilation Fan Energy

DOE-2 reports the fan energy in report SS-L. This SS-L report allows for separate
reporting of ventilation fan energy during non-heating and non-cooling hours. In order to
process scoring requirements that consider the energy use of mechanical fans (HERS
2006 for instance), the ventilation fan energy used during heating and cooling hours is
proportioned to heating and cooling in accordance with those energy uses. For allocation
purposes, the fan energy used during non-heating and non-cooling hours, which DOE2
reports on the SS-L report, is added to the total by the proportion of heating and cooling
fan energy used that month. If no heating or cooling fan energy was used that month then
50% is added to each.

Listing fan energy use separately is a challenge. During runtime ventilation fan energy is
not separated from standard air handler use even though the act of bringing in extra air
may increase the air handler runtime. For the benchmark and other reference home
buildings (e.g., HERS 2006 reference), the annual mechanical vent fan energy use is

 18

calculated according to formulas and is divided into heating and cooling portions based
on the ratio of heating to cooling energy use. hours.

Greater accuracy in separating out fan power can be obtained from EnergyPlus or other
tools that can report energy use within smaller time steps. This becomes important for the
runtime ventilation with minimum or maximum controls to separate out the time steps
when the system would have run anyhow and the time steps where it does not.

4.3 Ventilation fan energy use example

The following example results are for a St. Louis home that would score 30% on the
Building America benchmark analysis. The 2040 square-foot home is modeled with an
ach50 of 4.0 and a SEER 14/ HSPF 8.5 heat pump. More details of the home are
described in another report.12 The following mechanical ventilation options produce the
following results using EnergyGauge USA, version 2.5, release 10 (pre-release
developer’s version) and the Calculate > Annual Simulation menu option with the
following key parameters set to minimize influences on the results:

• no natural ventilation allowed (no opening windows for passive cooling as the
EnergyGauge program shuts off all mechanical ventilation during times when
algorithms indicate conditions are favorable for opening windows)

• auto-sizing set to off – all results based on Cooling system size of 28.9 kBtu/h and
Heating system size of 49.7 kBtu/h.

Results will be different for rated, proposed code and prototype buildings due to rules
that alter the amount of ventilation to assure that specified rule set standards are met.

Table 2. Cooling energy use (kWh) variation with mechanical ventilation fan strategy
Mechanical Vent
Method:
50 cfm rate entered for all

Cooling Cooling
and Mech.
Vent Fan

Mech Vent Fan
when cooling
system off*

Total
Cooling

% Increase
from no vent

None 1913 349 0 2262 0
Supply Vent, 20 W
continuous 1996 424 11 2431 7.5%

Exhaust Vent, 20 W
continuous 1979 421 11 2411 6.6%

Balanced Vent, 40 W
continuous 2046 490 21 2557 13.0%

0.6 effective ERV, 40 W
continuous 1981 484 23 2488 10.0%

Runtime Vent 1947 355 0 2302 1.8%
Runtime Vent w/25% min.
runtime 1967 510 94 2571 13.7%

Runtime vent w/outside
damper off at 25% max.
runtime

1920 351 0 2271 0.40%

Runtime Vent w/25% min.
and 25% max. 1940 515 93 2548 12.6%

*Represents added energy use during hours when there is no cooling or heating as proportioned to cooling

12 Fairey, Philip, Carlos Colon, Eric Martin, Subrato Chandra, “Comparing Apples, Oranges and Grapefruit: An Analysis of
Current Building Energy Analysis Standards for Building America, Home Energy Ratings and the 2006 International Energy
Conservation Code,” FSEC_CR_1650-06, September, 2006.

 19

Table 3. Heating energy use (kWh) variation with mechanical ventilation fan strategy

Mechanical Vent
Method:
50 cfm rate entered for all

Heating Heating
and Mech.
Vent Fan

Mech Vent
Fan when
heating
system off*

Total
Heating

% Increase
from no vent

None 5608 826 0 6434 0
Supply Vent,20 W 5971 951 25 6947 8.0%
Exhaust Vent, 20 W
continuous 6003 955 25 6983 8.5%

Balanced Vent, 40 W
continuous 6733 1124 49 7906 22.9%

0. 6 effective ERV, 40 W
continuous 6025 1033 49 7107 10.5%

Runtime Vent 5634 824 0 6462 0.44%
Runtime Vent w/25% min.
runtime 5608 937 169 6714 4.4%

Runtime vent w/outside
damper off at 25% max.
runtime

5624 828 0 6452 0.28%

Runtime Vent w/25% min.
and 25% max. 5598 936 169 9703 4.2%

*Represents added energy use during hours when there is no cooling or heating as proportioned to heating

Some explanation may help one understand the results shown in Tables 2 and 3.

4.3.1 Continuous Ventilation Systems

The exhaust vent option uses slightly more energy for heating, but slightly less for
cooling due to the heat of the fan being added to the space for the supply fan but not for
the exhaust fan.

Balanced air flow results in larger ventilation rates due to the governing equation (4-1)
for combining forced and natural ventilation.

Eq. 4 -1 Qtotal = (Qnat
2 + Qunbal

2)0.5+QBal

where Q represents volume of air flow (cfm or m/s).

We also assumed balanced flow required twice the fan power of unbalanced flow (40W
vs. 20W). Even when a 60% enthalpy recovery ventilator (ERV) is added, the energy use
is greater than for an unbalanced simple ventilation system.

4.3.2 Runtime Ventilation Systems

The runtime vent method uses the heating and cooling system fan and a purposeful,
ducted return leak “hole” with a damper to bring in outside air when the system runs.
Without any other controls, it only brings in fresh air only during periods when heating or
cooling requires the air handler to run. For the St. Louis home, the runtime vent option
only slightly increased heating and cooling energy use. Considering that we were only
adding 50 cfm when the system runs this is not surprising. For the St. Louis climate, the
home’s mechanical systems were only on 21.6% of the time. Thus, on average for the

 20

year, the home only was mechanically ventilated at an equivalent of 10.8 cfm (39.2 cfm
less than the continuous vent runs) and the net effect when combined with the envelope
ach50 leakage of 4.0 is very small. How small? Computing the difference between
straight natural infiltration and the total from the runtime ventilation run requires looking
at the difference between the flow calculated from equation 4-1 and what would have
otherwise occurred.

Eq. 4-2 Qdifference = Qtotal - Qnat

Figure 3 represents the hourly Qnat and Qdifference for the runtime ventilation case. The
average Qdifference value is 2.6 cfm. Thus, runtime vent is hardly any different, on an
annual basis, than no mechanical venting. Peak summer hours for this case were as high
as 26 cfm and thus for some select hours the mechanical ventilation may make a
significant difference but not on an annualized basis.

Runtime ventilation is highly dependent on system size. The system size entered (49.7
kBtu/h for winter and 28.9 kBtu/h for cooling) yielded very low winter runtimes as
shown on the top of Figure 3.

Figure 3. Hourly natural and added ventilation rates for runtime vent case. Inputs
were 50 cfm mechanical and 4 ach50 leakage (natural). Natural infiltration is
adjusted hourly by DOE2 based on natural driving forces (e.g., wind speed).

 21

Requiring the ventilation system to run at least 25% of each hour increases heating by 4
% and cooling by 14% compared to the no-vent scenario. On the other hand, if the
runtime vent is limited with a damper to be no greater than 25% of the hour, the model
predicts almost no difference in cooling or heating energy use. This is as expected
because the system will supply even less outside air than the simple runtime vent case
shown in Figure 3, where for some hours it is adding ventilation air for much more than
25% of the hour. Finally, a sophisticated controller that maintains exactly 25% minimum
and maximum runtime each hour results in a 4% increase in heating and a 13% increase
in cooling energy use compared to no venting, , or slightly less energy penalty than the
simpler 25% minimum runtime.

4.3.3. Fan Energy Use Explains Overall Energy Use Changes

Examining the breakout between actual cooling/heating and the fan energy use, it is
apparent that most of the added energy is from the fan. The percentage increase in
cooling for runtime vent with minimum is much higher than the heating percentage
simply because the extra fan energy is a higher percentage of the total cooling. Actual
cooling load is only slightly larger, not surprising as buildings require cooling many
times when it is more comfortable outside. This occurs due to internal and solar gains
creating cooling loads but reducing heating loads. Additionally, considering the fan
motor adds extra internal load (166 kWh during cooling hours for the 25% fixed runtime
case), it can explain all the difference in the column labeled cooling energy in Table 2 (27
kWh difference in the 25% fixed runtime case).

4.3.4. Fan Heat Energy is Extra Load

The heating value column in Table 2 is slightly misleading as the extra fan runtime also
provides heat from its motor. Thus, the 25% fixed runtime case shows less heating
(excluding fans) than the no vent case, but the software models the extra 279 kWh of fan
energy as heat which in this case, with minimal added outside air, more than makes up
for the added heating load due to infiltration.

5.0 Conclusions

FSEC has added capabilities for modelers to more accurately and more readily perform
Building America energy analysis. The BA Toolkit allows programmers to obtain
Benchmark characteristics easily. The ToolKit has been verified against the NREL
spreadsheet tool. The spreadsheet tool proved an excellent method for validating the
software as well as a good source for programming the algorithms for the ToolKit.

The simple hot water distribution algorithm FSEC developed provides a method to more
accurately account for losses, and FSEC has demonstrated a “typical” straight piping loss
in a Miami home may represent an increase of 2.4 % of the hot water energy use and also
a slight increase in cooling energy.

 22

Ventilation energy use methodologies have been expanded. Results from example runs
indicate that fresh air provided by systems as well as energy use due to ventilation energy
can vary significantly depending on the system control characteristics, even while sizing
the ventilation system for the same amount of outside air when venting. Simple runtime
vent systems may only bring in air 20% to 25% of the time on an annual average
compared to continuous vent systems. The actual amount of additional air brought in
relative to a natural infiltration only case can be very small as the unbalanced supply air
is added in quadrature with natural ventilation. In a simple runtime ventilation scheme the
model projects an annual average of only 2.6 cfm for a home with a 50 cfm runtime vent
rate and 4 ach50 envelope leakage.

Assuring that the runtime vent system operates 25% of every hour results in a small
energy penalty (4% and 13% of heating and cooling energy, respectively, in the St. Louis
example). Much of this penalty is due to the energy use of the fan. Balanced ventilation
strategies result in more outside air and typically require more fan energy use than supply
or exhaust systems. Simulation results for St. Louis predict that even with 60% recovery,
enthalpy ventilation systems may result in greater energy use than supply or exhaust
ventilation systems that take half the fan energy.

 23

Appendix A. Building America Benchmark Toolkit Software Description Details
Classes

• BA_BenchmarkEnvelope
• BA_BenchmarkAppliances
• BA_BenchmarkEquipment
• BA_MiscCalc

BA_BenchmarkEnvelope

Description: The class contains methods to calculate the envelope parameters of the
Building America benchmark home.

Method Summary

BA_Benchmark2006EnvelopeMaster(Htg_Deg_Days As Single,
Floor_Area As Single, Wall_Area_Gross As Single,
Wall_Area_Belowgrade As Single, Wall_Area_Common As
Single, Weather_Factor As Single, BasementFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As
Boolean, BasementConditioned As Boolean)

Double GetInsRValue(FF As Double, Uo As Double, StudR As Double,
RestR As Double, GetInsRError As Boolean)

 Ref_DoorU()

Single Ref_DoorArea()

Ref_Window_Area(Floor_Area As Single, Wall_Area_Common
As Single, Wall_Area_Gross As Single, Wall_Area_Belowgrade
As Single, BasementConditionedFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As
Boolean, BasementConditioned As Boolean)

 Ref_Wall_Ucalc(Htg_Deg_Days As Single, Attach As Boolean)

 Ref_Window_Ucalc(Htg_Deg_Days As Single)

 Ref_Floor_Ucalc(Htg_Deg_Days As Single)

 Ref_SlabFloor_Ucalc(Htg_Deg_Days As Single)

 Ref_RaisedFloor_Ucalc(Htg_Deg_Days As Single)

 Ref_Basement_Ucalc(Htg_Deg_Days As Single)

 Ref_Crawlspace_Ucalc(Htg_Deg_Days As Single)

 Ref_Ceiling_Ucalc(Htg_Deg_Days As Single)

Single Ref_WallSolarAbsorptance()

 24

Single Ref_WallEmittance()

Single Ref_RoofSolarAbsorptance()

Single Ref_RoofEmittance()

 Ref_Framing_Fractions()

 Ref_RoofInsulation()

Single Ref_Infiltration(Weather_Factor As Single)

 Ref_ShadingCoefficients(Htg_Deg_Days As Single)

 Ref_Windows()

 Ref_Roof()

 Final_U_Values()

 ValueError(compname As String, compvalue As Single)
TBA_Benchmark

EnvCalcOut
Get_Envelope_Outputs()

Single FurnitureMass()

Single PercentCarpet()

Single SlabInsulationDepth(Htg_Deg_Days As Single)

Single
BasementSpecificLeakageArea(Wall_Area_Belowgrade As
Single, Weather_Factor As Single,
Basement_Gross_Wall_Area_Above_Grade As Single)

Single

OverallSpecificLeakageArea(Floor_Area As Single,
Wall_Area_Belowgrade As Single, Weather_Factor As Single,
BasementConditionedFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single)

Boolean HDDError(HDD As Single)

String GetGlassType(Uvalue As Single)

Mixed_Floor(Tile_Frac As Single, Hardwood_Frac As Single,
Carpet_Frac As Single, TH As Single, Cond As Single, Dens As
Single, SH As Single, MixedRvalue As Single)

Single ConvertSHGCtoSC(SHGC As Single, Screen_Multiplier As
Single)

 25

Method Detail

BA_Benchmark2006EnvelopeMaster

BA_Benchmark2006EnvelopeMaster (Htg_Deg_Days As Single, Floor_Area As Single,
Wall_Area_Gross As Single, Wall_Area_Belowgrade As Single, Wall_Area_Common As
Single, Weather_Factor As Single, BasementFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As Boolean,
BasementConditioned As Boolean)

This method calls each envelope component routine.

Parameters:
Htg_Deg_Days - use NREL values from Calcs5 page of spreadsheet
Floor_Area - conditioned floor area of home (ft2)
Wall_Area_Gross - gross wall area of non-basement portion of home

includes window and door areas within wall
Wall_Area_Belowgrade - wall area below grade (ft2)
Wall_Area_Common - for attached dwellings this is the wall area of the

common wall (ft2)
Weather_Factor - based on the city
BasementFloorArea- the area of the basement (ft2)
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of

the basement wall area (ft2)
Attach – true if house is considered an attached dwelling
BasementConditioned – true if home has part of basement conditioned

Returns:
None

Throws:
None

GetInsRValue

Double GetInsRValue (FF As Double, Uo As Double, StudR As Double, RestR As Double,
GetInsRError As Boolean)

This method returns the Insulation R Value based on the envelope assembly (wall, roof, floor,
etc.) parameters solving for parallel heat flow.

Parameters:
FF – Framing Factor of assembly (0 to 1.0)
Uo - Overall U value of assembly such as those returned from Benchmark
envelope routines
StudR - The R value of the stud

 26

RestR - The R value of all parts in common with both the framing and insulating
portions of assembly

GetInsRError – True if an error is found in routine
Returns:
 GetInsRValue
Throws:
 None

Ref_DoorU

Ref_DoorU()

This method

Parameters:
None

Returns:
 None
Throws:
 None

Ref_DoorArea

Single Ref_DoorArea()

This method sets the door are of the home

Parameters:
None

Returns:
 Reference door area
Throws:
 None

Ref_Window_Area

Ref_Window_Area(Floor_Area As Single, Wall_Area_Common As Single, Wall_Area_Gross
As Single, Wall_Area_Belowgrade As Single, BasementFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single, Attach As Boolean,
BasementConditioned As Boolean)

This method calculates the window area, Fa, and F of the home

Parameters:
Htg_Deg_Days – Heating Degree Days base 65 F

 27

Floor_Area - conditioned floor area of home (ft2)
Wall_Area_Common - for attached dwellings this is the wall area of the

common wall (ft2)
Wall_Area_Gross - gross wall area of non-basement portion of home

includes window and door areas within wall
Wall_Area_Belowgrade - wall area below grade (ft2)
BasementFloorArea- the area of the basement (ft2)
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of

the basement wall area (ft2)
Attach – true if house is considered an attached dwelling
BasementConditioned – true if home has part of basement conditioned

Returns:
 None
Throws:
 None

Ref_Wall_Ucalc

Ref_Wall_Ucalc(Htg_Deg_Days As Single, Attach As Boolean)

This method calculates the overall U value of the wall assembly

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F
Attach - true if house is considered an attached dwelling

Returns:
 None
Throws:
 None

Ref_Window_Ucalc

Ref_Window_Ucalc(Htg_Deg_Days As Single)

This method calculates the overall U value fo the window assembly

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_Floor_Ucalc

 28

Ref_Floor_Ucalc(Htg_Deg_Days As Single)

This method calculates the overall U value of floor assemblies between conditioned and
non-conditioned space

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_SlabFloor_Ucalc

Ref_SlabFloor_Ucalc(Htg_Deg_Days As Single)

This method calculates the perimeter insulation U value

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_RaisedFloor_Ucalc

Ref_RaisedFloor_Ucalc(Htg_Deg_Days As Single)

This method calculates the U value of the assembly

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_Basement_Ucalc

Ref_Basement_Ucalc(Htg_Deg_Days As Single)

This method calculates the U value fo the basement walls

 29

Parameters:

Htg_Deg_Days - Heating Degree Days base 65 F
Returns:
 None
Throws:
 None

Ref_Crawlspace_Ucalc

Ref_Crawlspace_Ucalc(Htg_Deg_Days As Single)

This method calculates the U value fo the crawlspace walls

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_Ceiling_Ucalc

Ref_Ceiling_Ucalc(Htg_Deg_Days As Single)

This method calculates the U value of the ceiling assembly

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

GetCeilingUvalue

Single GetCeilingUvalue(Htg_Deg_Days As Single)

This method calculates the

Parameters:
Htg_Deg_Days -

Returns:

 30

 Ceiling U Value
Throws:
 None

Ref_WallSolarAbsorptance

Single Ref_WallSolarAbsorptance()

This method calculates the exterior wall solar absorptance

Parameters:
None

Returns:
 Reference Wall Solar Absorptance
Throws:
 None

Ref_WallEmittance

Single Ref_WallEmittance()

This method calculates the exterior wall emittance

Parameters:
None

Returns:
 Reference Wall Emittance
Throws:
 None

Ref_RoofSolarAbsorptance

Single Ref_RoofSolarAbsorptance()

This method calculates the roof exterior solar absorptance

Parameters:
None

Returns:
 Reference Roof Solar Absorptance
Throws:
 None

 31

Ref_RoofEmittance

Single Ref_RoofEmittance()

This method calculates the exterior roof surface emissivity

Parameters:
None

Returns:
 Reference Roof Emittance
Throws:
 None

Ref_Framing_Fractions

Ref_Framing_Fractions()

This method calculates the framing fractions for walls, floors, ceilings and roofs

Parameters:
None

Returns:
 None
Throws:
 None

Ref_RoofInsulation

Ref_RoofInsulation()

This method calculates the insulation level of material adjacent to the roof

Parameters:
None

Returns:
 None
Throws:
 None

Ref_Infiltration

Single Ref_Infiltration(Weather_Factor As Single)

 32

This method calculates the natural infiltration (leakage) of the home

Parameters:
Weather_Factor -

Returns:
 Reference Infiltration
Throws:
 None

Ref_ShadingCoefficients

Ref_ShadingCoefficients(Htg_Deg_Days As Single)

This method calculates the solar heat gain shading coefficient for the windows

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 None
Throws:
 None

Ref_Windows

Ref_Windows()

This method calculates related glass parameters:
 BA_BenchmarkEnvCalcOut.Overhangs := 0;

BA_BenchmarkEnvCalcOut.Glass_Type : =
GetGlassType(BA_BenchmarkEnvCalcOut.UValuesAssembly.Window_);
BA_BenchmarkEnvCalcOut.Frame_Type := 'Vinyl';

 BA_BenchmarkEnvCalcOut.Int_Shading := 'Drapes/blinds';
 BA_BenchmarkEnvCalcOut.Screening := 'None';

Parameters:
None

Returns:
 None
Throws:
 None

Ref_Roof

 33

Ref_Roof()

This method sets the following roof outputs:

BA_BenchmarkEnvCalcOut.Roof_Deck_Insulation_Lvl := 0;
 BA_BenchmarkEnvCalcOut.Roof_Color := 'White';
 BA_BenchmarkEnvCalcOut.Roof_Material := 'Composition shingles';
 BA_BenchmarkEnvCalcOut.Attic_Description := 'Full attic';
 BA_BenchmarkEnvCalcOut.Roof_Config := 'Gable or shed';
 BA_BenchmarkEnvCalcOut.Attic_Vent_Ratio := 1/300;

Parameters:
None

Returns:
 None
Throws:
 None

ValueError

ValueError(compname As String, compvalue As Single)

This method provides an error mesage

Parameters:
compname – The name of the component not meeting an error rule
compvalue - The value fo the component

Returns:
 None
Throws:
 None

Get_Envelope_Outputs

TBA_BenchmarkEnvCalcOut Get_Envelope_Outputs()

This method returns all of the envelope characteristics for a given prototype home.

Parameters:
None

Returns:
 Record consisting of outputs of Envelope Calculations
TBA_BenchmarkEnvCalcOut = record
 BA_Benchmark_Error: WordBool;
 Radiant_Barrier: WordBool;
 Attic_Vent_Ratio: Single;
 Ceiling_Framing_Fraction: Single;

 34

 CrawlspaceWall_Framing_Fraction: Single;
 Door_Area: Single;
 Floor_Framing_Fraction: Single;
 Overhangs: Single;
 Roof_Deck_Insulation_Lvl: Single;
 Roof_Framing_Fraction: Single;
 SC_Cooling: Single;
 SC_Heating: Single;
 SHGC_Cooling: Single;
 SHGC_Heating: Single;
 SLA: Single;
 SolarAbsorptance_Roof: Single;
 SolarAbsorptance_Walls: Single;
 Wall_Framing_Fraction: Single;
 WindowArea: Single;
 WindowFrameArea: Single;
 SuperGrossWallArea: Single;
 TotalThermalBoundaryWallArea: Single;
 F_Attached: Single;
 FA: Single;
 Emittance_Roof: Single;
 Emittance_Walls: Single;
 SlabInsulationDepth: Single;
 PercentCarpet: Single;
 CarpetRValue: Single;
 FurnitureMass: Single;
 BasementSLA: Single;
 OVerallSLA: Single;
 Attic_Description: WideString;
 Frame_Type: WideString;
 Glass_Type: WideString;
 Int_Shading: WideString;
 Roof_Color: WideString;
 Roof_Config: WideString;
 Roof_Material: WideString;
 Screening: WideString;
 RValuesAssembly: TUandRvalues;
 RValuesInsulation: TUandRvalues;
 RStud: TUandRvalues;
 RRest: TUandRvalues;
 UValuesAssembly: TUandRvalues;
 UValuesInsulation: TUandRvalues;

Where
 TUandRvalues = record
 BasementCeil: Single;
 BasementWall: Single;

 35

 Ceil: Single;
 CrawlspaceWall: Single;
 CrawlspaceCeil: Single;
 Door: Single;
 FloorOverGarage: Single;
 FloorRaised: Single;
 Overall: Single;
 Roof: Single;
 SlabPerimeterUnheated: Single;
 SlabPerimeterHeated: Single;
 Wall: Single;
 Window: Single;

Throws:
 None

FurnitureMass()

Single FurnitureMass()

This method calculates the furniture mass for the building

Parameters:
None

Returns:
 Furniture Mass
Throws:
 None

PercentCarpet

Single PercentCarpet()

This method calculates the percent carpet

Parameters:
None

Returns:
 Carpet Percentage
Throws:
 None

SlabInsulationDepth

 36

Single SlabInsulationDepth(Htg_Deg_Days As Single)

This method calculates the depth of the perimeter insulation

Parameters:
Htg_Deg_Days - Heating Degree Days base 65 F

Returns:
 Slab Insulation Depth
Throws:
 None

BasementSpecificLeakageArea

Single BasementSpecificLeakageArea(Wall_Area_Belowgrade As Single, Weather_Factor As
Single, Basement_Gross_Wall_Area_Above_Grade As Single)

This method calculates the specific leakage area of the basement

Parameters:
Wall_Area_Belowgrade - – the area (ft2) of basement wall that is below
ground level
Weather_Factor – climate dependent wind/terrain parameter
Basement_Gross_Wall_Area_Above_Grade – the area (ft2) of basement wal
that is above ground level

Returns:
 Basement Specific Leakage Area
Throws:
 None

OverallSpecificLeakageArea

Single OverallSpecificLeakageArea(Floor_Area As Single, Wall_Area_Belowgrade As Single,
Weather_Factor As Single, BasementFloorArea As Single,
Basement_Gross_Wall_Area_Above_Grade As Single)

This method calculates the home specific leakage area

Parameters:
Floor_Area - conditioned floor area of home (ft2)
Wall_Area_Belowgrade - wall area below grade (ft2)
Weather_Factor - based on the city
BasementFloorArea- the area of the basement (ft2)
Basement_Gross_Wall_Area_Above_Grade - the above-grade portion of

the basement wall area (ft2)

Returns:

 37

 Overall Specific Leakage Area
Throws:
 None

HDDError

Boolean HDDError(HDD As Single)

This method returns True if HDD is less than 0 or greater than 60,000

Parameters:
HDD – heating degree days (base 65 F)

Returns:

Throws:
 None

GetGlassType

String GetGlassType(Uvalue As Single)

This method calculates the type of window that best matches the U-value
 if Uvalue >= 0.9 then Result := 'Single'
 else if (Uvalue >= 0.57) and (Uvalue < 0.9) then Result := 'Double'
 else if (Uvalue >= 0.45) and (Uvalue < 0.57) then Result := 'Low-E Double'
 else if Uvalue < 0.45 then Result := 'Low-E Triple';

Parameters:
Uvalue – The U-value fo the overall window assembly

Returns:
 Glass Type
Throws:
 None

Mixed_Floor

Mixed_Floor(Tile_Frac As Single, Hardwood_Frac As Single, Carpet_Frac As Single, TH As
Single, Cond As Single, Dens As Single, SH As Single, MixedRvalue As Single)

This method calculates the heat transfer properties of a single floor material that is
calculated based on the fraction of floor areas and default properties for tile, sood and
carpet.

Parameters:
Tile_Frac - fraction of floor area (0 to 1.0) that is tile

 38

Hardwood_Frac – Fraction of floor area (0 to 1.0) that is wood
Carpet_Frac – Fraction of floor area (0 to 1.0) that is carpet

Returns:
TH – Mixed property thickness
Cond – Mixed property conductivity
Dens – Mixed floor property density
SH – Mixed floor property specific heat
MixedRvalue – The R-value of the mixed property

Throws:
 None

ConvertSHGCtoSC

Single ConvertSHGCtoSC(SHGC As Single, Screen_Multiplier As Single)

This method converts SHGC to SC according to ASHRAE Fundamentals
1997, page 29.23, equation 38

Parameters:
SHGC – The solar heat gain coefficient for the window
Screen_Multiplier – Value (0 to 1) for any insect or other window screening

Returns:

Throws:
 None

 39

BA_BenchmarkAppliances

Description: The class calculates the energy use and hourly schedules of appliances and
the sensible and latent internal loads form the appliances and occupants.

Method Summary

BA_Benchmark2006AppliancesMaster(Beds As Integer, FFA As
Single, StateMultiplier As Single, DryerFuel As String,
RangeFuel As String)

 Clotheswasher(Beds As Integer)

 Dishwasher(Beds As Integer)

 Dryer(Beds As Integer, DryerFuel As String)

 Lighting(FFA As Double)

 Misc(FFA As Double, StateMultiplier As Double)

 Occupancy(Beds As Integer)

 Range(RangeFuel As String)

 Refrigeration()

Double ConvertThermsToPropaneGal(Therms As Double)
TBA_BenchmarkA

ppliancesCalcOut Get_Appliances_Outputs()

 PlugInLighting(FFA As Double)

Method Detail

BA_Benchmark2006AppliancesMaster

BA_Benchmark2006AppliancesMaster (Beds As Integer, FFA As Single, StateMultiplier As
Single, DryerFuel As String, RangeFuel As String)

This method calls each appliance component routine.

Parameters:
Beds – Number of Bedrooms

 40

FFA – Finished Floor Area
StateMultiplier – Factor from NREL spreadsheet
DryerFuel – ‘Electric’ or ‘Gas’ or ‘Propane’
RangeFuel – ‘Electric’ or ‘Gas’ or ‘Propane’

Returns:
None

Throws:
None

Clotheswasher

Clotheswasher(Beds As Integer)

This method populates the TBA_BenchmarkAppliancesCalcOut.Cotheswasher_Info record.

Parameters:
Beds – Number of Bedrooms

Returns:
None

Throws:
None

Dishwasher

Dishwasher(Beds As Integer)

This method populates the TBA_BenchmarkAppliancesCalcOut.Dishwasher_Info record.

Parameters:
Beds – Number of Bedrooms

Returns:
None

Throws:
None

Dryer

Dryer(Beds As Integer, DryerFuel As String)

This method populates the TBA_BenchmarkAppliancesCalcOut.Dryer_Info record.

 41

Parameters:
Beds – Number of Bedrooms
DryerFuel – ‘Electric’ or “Gas’ or ‘Propane’

Returns:
None

Throws:
None

Lighting

Lighting(FFA As Double)

This method populates the TBA_BenchmarkAppliancesCalcOut.Lighting_Info record.

Parameters:
FFA – Finished Floor Area

Returns:
None

Throws:
None

Misc

Misc(FFA As Double, StateMultiplier As Double)

This method populates the TBA_BenchmarkAppliancesCalcOut.Misc_Info record.

Parameters:
FFA – Finished Floor Area
StateMultiplier – Factor for determining miscellaneous use –use 1 if unknown,
NREL spreadsheet has default values for each state

Returns:
None

Throws:
None

Occupancy

Occupancy(Beds As Integer)

This method populates the TBA_BenchmarkAppliancesCalcOut.Occupancy_Info record.

 42

Parameters:
 Beds – Number of Bedrooms
Returns:

None
Throws:

None

Range

Range(RangeFuel As String)

This method populates the TBA_BenchmarkAppliancesCalcOut.Range_Info record.

Parameters:
RangeFuel – ‘Electric’ or ‘Gas’ or ‘Propane’

Returns:
None

Throws:
None

Refrigeration

Refrigeration()

This method populates the TBA_BenchmarkAppliancesCalcOut.Refrigeration_Info record.

Parameters:
None

Returns:
None

Throws:
None

ConvertThermsToPropaneGal

Double ConvertThermsToPropaneGal(Therms As Double)

This method calls

Parameters:

 43

Therms – The energy use in therms of the gas appliance
Returns:

Equivalent Gallons of Propane
Throws:

None

Get_Appliances_Outputs

TBA_BenchmarkAppliancesCalcOut Get_Appliances_Outputs()

This method returns all of the appliance characteristics for a given prototype home.

Parameters:
None

Returns:
Record consisting of outputs of Appliance Calculations:
TBA_BenchmarkAppliancesCalcOut = record
 Added_Elec_Annual_Use: Double;
 Dishwasher_HWGallonsPerDay: Double;
 Clotheswasher_HWGallonsPerDay: Double;
 CeilingFan_Info: TBAAppliance_Info;
 ClothesWasher_Info: TBAAppliance_Info;
 Dishwasher_Info: TBAAppliance_Info;
 Dryer_Info: TBAAppliance_Info;
 Lighting_Info: TBAAppliance_Info;
 Misc_Info: TBAAppliance_Info;
 PoolPump_Info: TBAAppliance_Info;
 Range_Info: TBAAppliance_Info;
 Refrigeration_Info: TBAAppliance_Info;
 Occupancy_Info: TBAAppliance_Info;
 People: Single;
 SensiblePerPerson: Single;
 LatentPerPerson: Single;
 PlugInLighting_Info: TBAAppliance_Info;

where
 TBAAppliance_Info = record
 Curr_Appliance_ID: Integer; alphabetical from 1 -9 (clotheswasher is 1,
refrigeration is 9)
 Curr_Annual_Use: Single; annual energy use
 Curr_Peak_Demand: Single; largest hourly value of energy use
 Curr_Percent_Released: Single; total percentage of energy released inside the

home
 Curr_Latent_Released: Single; percentage of total energy released as latent

energy inside the home

 44

 Curr_Sensible_Released: Single; percentage of total energy released as sensible
energy inside the home

 Curr_Annual_Use_Type: WideString; units of annual energy use
 Curr_Peak_Demand_Type: WideString; units of peak demand
 Curr_Appliance_Type: WideString; ‘Clotheswasher’, or ‘Dryer’,

or…,’Refrigeration’
 Curr_Name: WideString; 'BA_Benchmark 2006'
 Curr_Hour: array[1..24] of Single; fraction of peak demand for each hour

Throws:
None

PlugInLighting

PlugInLighting(FFA As Double)

This method populates the TBA_BenchmarkAppliancesCalcOut.PLugInLighting_Info record.

Parameters:
FFA – Finished Floor Area

Returns:
None

Throws:
None

 45

BA_BenchmarkEquipment

Description: This class contains the methods to determine the benchmark home heating,
cooling, air distribution, water heating and mechanical ventilation characteristics.

Method Summary

BA_Benchmark2006EquipmentMaster(ambientannualtemp As
Single, baths As Single, FFA As Single, Cond_Area As Single,
HeatCFM As Single, CoolCFM As Single, DHWdeliverytemp As
Single, DHWsupplytemp As Single, HeatingCapacity As Single,
CoolingCapacity As Single, Beds As Integer, Stories As Integer,
Nreturns As Integer, NumHotWaterSystems As Integer,
NumHeatingSystems As Integer, BasementConditioned As
Boolean, CrawlSpaceConditioned As Boolean,
PredominantFoundation As String, Heating_Fuel_Type As String,
HotWater_Primary_Type As String, HotWater_Location As
String, Heating_Type As String, HotWater_FuelType As String)

Ducts(FFA As Single; Nreturns As Integer, Stories As Integer;
BasementConditioned As Boolean, CrawlSpaceConditioned As
Boolean, PredominantFoundation As String)

 Cooling ()

 Heating(NumHeatingSystems As Integer, Heating_Fuel_Type As
String, Heating_Type As String)

WaterHeating(HotWater_Primary_Type As String,
HotWater_FuelType As String, HotWater_Location As String,
Beds As Integer, NumHotWaterSystems As Integer, baths As
Single, ambientannualtemp As Single, DHWdeliverytemp As
Single, DHWsupplytemp As Single)

 BAHeatingEquip(HeatTypeIn As String, FuelType As String,
HeatEff As Single, HeatTypeOut As String)

Single BACoolingEquip(CoolType As String, FuelType As String)

Single BAWaterHeatingEF(WaterHeatingType As String, FuelType As
String, WaterHeatingCap As Single)

Single BAWaterHeatingRE(FuelType As String)

Single BAWaterHeatingStorageVolume(Curr_Fuel_Type As String,
Beds As Integer, baths As Single)

Single BAWaterHeatingBurnerCapacity(Curr_Fuel_Type As String,
Beds As Integer, baths As Single)

Single BACoolingSetPoint ()

Single BAHeatingSetPoint ()

 46

Single BAMechVentCFMFlow(CFA As Single, Beds As Integer)

Single BAMechVentPower(CFA As Single, Beds As Integer)

WaterHeatingGallonsPerDaybyMonth(Beds As Integer,
ambientannualtemp As String, baths As String, deliverytemp As
String, supplytemp As String)

TBA_Benchmark
EquipCalcOut Get_Equipment_Output ()

Set_AmbientMonthTemp(Jan As Single, Feb As Single, Mar As
Single, Apr As Single, May As Single, Jun As Single, Jul As
Single, Aug As Single, Sep As Single, Oct As Single, Nov As
Single, Dec As Single)

Single FindHighest(ArraySize As Integer)

Single FindLowest(ArraySize As Integer)

Method Detail

BA_Benchmark2006EquipmentMaster

BA_Benchmark2006EquipmentMaster(ambientannualtemp As Single, baths As Single, FFA
As Single, Cond_Area As Single, HeatCFM As Single, CoolCFM As Single, DHWdeliverytemp
As Single, DHWsupplytemp As Single, HeatingCapacity As Single, CoolingCapacity As Single,
Beds As Integer, Stories As Integer, Nreturns As Integer, NumHotWaterSystems As Integer,
NumHeatingSystems As Integer, BasementConditioned As Boolean, CrawlSpaceConditioned As
Boolean, PredominantFoundation As String, Heating_Fuel_Type As String,
HotWater_Primary_Type As String, HotWater_Location As String, Heating_Type As String,
HotWater_FuelType As String)

This method calls each equipment component routine.

Parameters:
ambientannualtemp – the annual average outdoor temperature in degrees F
baths – number of bathrooms
FFA – finished floor area
Cond_Area – the conditioned floor area

 47

DHWdeliverytemp -
DHWsupplytemp -
Beds – Number of Bedrooms
Stories – Number f Stories
Nreturns – Number of returns
NumHotWaterSystems – Number of hot water systems
NumHeatingSystems – Number of heating systems
BasementConditioned – True if basement is conditioned
CrawlSpaceConditioned – True if crawlspace is conditioned
PredominantFoundation – ‘Basement’ or ’Crawlspace’ or’Slab’
Heating_Fuel_Type – ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil’
HotWater_Primary_Type - ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil”
HotWater_Location -
Heating_Type -
HotWater_FuelType - ‘Electric’ or ‘Gas’ or ‘’Propane’ or ’Oil”

Returns:
None

Throws:
None

Ducts

Ducts(FFA As Single; Nreturns As Integer, Stories As Integer; BasementConditioned As
Boolean, CrawlSpaceConditioned As Boolean, PredominantFoundation As String)

This method calculates the Duct_info and air handler and other duct parameters.

Parameters:
 FFA – Finished Floor Area

Nreturns – Number of returns
Stories – Number of stories
BasementConditioned – ‘True’ if conditioned
CrawlSpaceConditioned – ‘True’ if conditioned
PredominantFoundation – ‘Basement’ or ’Crawlspace’ or’Slab’

Returns:
None

Throws:
None

Cooling

Cooling ()

This method calculates the cooling equipment efficiency paremters

 48

Parameters:

None
Returns:

None
Throws:

None

Heating

Heating(NumHeatingSystems As Integer, Heating_Fuel_Type As String, Heating_Type As
String)

This method will base the heating system parameters based on the input of fuel and heating type.
IF the number of heating systems is 0, it does notset the parameters.

Parameters:
NumHeatingSystems – The number of heating systems
Heating_Fuel_Type – The type of fuel used for the heating system Electric’ or
‘Gas’ or ‘Propane’ or ’Oil’
Heating_Type – For non-electric fuel systems the efficiency will change if ‘Heat
pump’ or ‘Hydronic’ is part of the heating type entered

Returns:
None

Throws:
None

WaterHeating

WaterHeating(HotWater_Primary_Type As String, HotWater_FuelType As String,
HotWater_Location As String, Beds As Integer, NumHotWaterSystems As Integer, baths As
Single, ambientannualtemp As Single, DHWdeliverytemp As Single, DHWsupplytemp As
Single)

This method calculates the water heating parameters for the home

Parameters:
HotWater_Primary_Type -
HotWater_FuelType – ‘Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil”
HotWater_Location – Location of the hot water system
Beds – Number of bedrooms
NumHotWaterSystems – Number of hot water systems
baths – Number of bathrooms

 49

ambientannualtemp – Annual average outdoor temperature, degrees F
DHWdeliverytemp – Delivery temperature, degrees F
DHWsupplytemp – Supply temperature, degrees F

Returns:
None

Throws:
None

BAHeatingEquip

BAHeatingEquip(HeatTypeIn As String, FuelType As String, HeatEff As Single, HeatTypeOut
As String)

This method calculates the heating type and heatingefficiency

Parameters:
HeatTypeIn - For non-electric fuel systems the efficiency will change if ‘Heat
pump’ or ‘Hydronic’ is part of the heating type entered
FuelType - – The type of fuel used for the heating system Electric’ or ‘Gas’ or
‘Propane’ or ’Oil’

Returns:
HeatEff – The efficiency of the hating system
HeatTypeOut – The type of system entered unless the fuel type is electric in
which case it will return ‘Electric Heat Pump’

Throws:
None

BAWaterHeatingEF

Single BAWaterHeatingEF(WaterHeatingType As String, FuelType As String,
WaterHeatingCap As Single)

This method calculates the water heating efficiency

Parameters:
WaterHeatingType –
FuelType - Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil”
WaterHeatingCap – The capacity of the water heating tank

Returns:
Water Heating Efficiency

Throws:
None

 50

BAWaterHeatingRE

Single BAWaterHeatingRE(FuelType As String)

This method calculates the recovery efficiency

Parameters:
FuelType - Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil”

Returns:
Water Heating Recovery Efficiency

Throws:
None

BAWaterHeatingStorageVolume

Single BAWaterHeatingStorageVolume(Curr_Fuel_Type As String, Beds As Integer, baths As
Single)

This method

Parameters:
Curr_Fuel_Type – ‘Electric’ or ‘Natural Gas’ or ‘’Propane’ or ’Fuel Oil”
Beds – Number of bedrooms
baths –Number of bathrooms

Returns:
None

Throws:
None

BAWaterHeatingBurnerCapacity

Single BAWaterHeatingBurnerCapacity(Curr_Fuel_Type As String, Beds As Integer, baths
As Single)

This method calculates the burner capacity

Parameters:
Curr_Fuel_Type – ‘Electric’ or ‘Gas’
Beds - Number of bedrooms
baths – number of bathrooms

Returns:

 51

BAWaterHeatingBurnerCapacity in Btu
Throws:

None

BACoolingSetPoint

Single BACoolingSetPoint ()

This method returns the BA cooling temperature in degrees F

Parameters:
None

Returns:
BACoolingSetPoint

Throws:
None

BAHeatingSetPoint

Single BAHeatingSetPoint ()

This method

Parameters:
None

Returns:
BAHeatingsSetPoint

Throws:
None

BAMechVentCFMFlow

Single BAMechVentCFMFlow(CFA As Single, Beds As Integer)

This method returns the cfm of the benchmark mechanical vent system

Parameters:
CFA – conditioned floor area
Beds – number of bedrooms

Returns:

 52

BANechVebtCFMFlow
Throws:

None

BAMechVentPower

Single BAMechVentPower(CFA As Single, Beds As Integer)

This method returns the Wattage of the benchmark mechanical vent system

Parameters:
CFA – conditioned floor area
Beds – number of bedrooms

Returns:
BAMechVentPower in Watts

Throws:
None

WaterHeatingGallonsPerDaybyMonth

WaterHeatingGallonsPerDaybyMonth(Beds As Integer, ambientannualtemp As String, baths
As String, deliverytemp As String, supplytemp As String)

This method calculates the water use per day for each end-use and returns the annual total
averaage

Parameters:
Beds – number of bedrooms
ambientannualtemp – average anuual outdoor temperature, degrees F
baths – number of bathrooms
deliverytemp – hot water delivery temperature, degrees F
supplytemp –hot water delivery temperature, degrees F

Returns: None
Throws:

None

Get_Equipment_Output

TBA_BenchmarkEquipCalcOut Get_Equipment_Output ()

 53

This method returns all of the equipment characteristics for a given prototype home.

Parameters:
None

Returns:
Record consisting of Equipment outputs
TBA_BenchmarkEquipCalcOut = record
 Air_Handler_Location: WideString;
 Duct_Material: WideString;
 Supply65: WideString;
 Supply35: WideString;
 Air_Handler_kWhperCFM: Single;
 Conditioned_Supply_R_Value: Single;
 Conditioned_Return_R_Value: Single;
 Total_Leakage_fraction: Single;
 Total_Leakage_CFMHeat: Single;
 Total_Leakage_CFMCool: Single;
 DHWRecoveryEfficiency: Single;
 DHWBurnerCapacity: Single;
 MechVentCFMFlow: Single;
 MechVentAnnualkWh: Single;
 HeatingSetPoint: Single;
 CoolingSetPoint: Single;
 WaterUse: array[1..13] of Single;
 ShowerandBath: array[1..13] of Single;
 Sink: array[1..13] of Single;
 Dishwasher: array[1..13] of Single;
 Clotheswasher: array[1..13] of Single;
 BADuct_Info: TBADuct_Info;
 BACool_Info: TBACool_Info;
 BAHeat_Info: TBAHeat_Info;
 BAWater_Info: TBAWater_Info;
end;

Throws:
None

Set_AmbientMonthTemp

Set_AmbientMonthTemp(Jan As Single, Feb As Single, Mar As Single, Apr As Single, May As
Single, Jun As Single, Jul As Single, Aug As Single, Sep As Single, Oct As Single, Nov As
Single, Dec As Single)

This method sets the ambient month temperatures.

Parameters:

 54

Jan – Ambient temperature of January
Feb - Ambient temperature of February
Mar - Ambient temperature of March
Apr - Ambient temperature of April
May - Ambient temperature of May
Jun - Ambient temperature of June
Jul - Ambient temperature of July
Aug - Ambient temperature of August
Sep - Ambient temperature of September
Oct - Ambient temperature of October
Nov - Ambient temperature of November
Dec - Ambient temperature of December

Returns:
None

Throws:
None

FindHighest

Single FindHighest

This method finds the highest month temperature.

 Parameters:
None

Returns:
Highest value from the array

Throws:
None

FindLowest

Single FindLowest(ArraySize As Integer)

This method finds the lowest month temperature.

Parameters:
None

Returns:
Lowest value from the array

Throws:
None

 55

BAMiscCalc

Description: The class contains items that may be used by multiple other classe.

Method Summary

Single MaxReal(a As Single, b As Single)

Single MinReal(a As Single, b As Single)

Boolean AllCapsCompare(MyString1 As String, MyString2 As String)

Method Detail

MaxReal

Single MaxReal(a As Single, b As Single)

This method returns the larger of two values.

Parameters:
a – any real number
b – any real number

Returns:
MaxReal

Throws:
None

MinReal

Single MinReal(a As Single, b As Single)

This method returns the smallest of two vlues

Parameters:
a – any real number
b – any real number

Returns:
MinReal

Throws:
None

 56

AllCapsCompare

boolean AllCapsCompare(MyString1 As String, MyString2 As String)

This method makes a case insensitive comparison of two strings and returns true if thestrings
match

Parameters:
MyString1 – any string
MyString2 –any string

Returns:
AllCapsCompare

Throws:
None

 57

Appendix B. Water Heating Temperature Data

ID Year Day Time Sec

Temp
(F)

104 2005 278 1649 1 109.3

104 2005 278 1649 2 109.2

104 2005 278 1649 3 109.8

104 2005 278 1649 4 110.7

104 2005 278 1649 5 110.6

104 2005 278 1649 6 109.4

104 2005 278 1649 7 110.4

104 2005 278 1649 8 110.5

104 2005 278 1649 9 110.5

104 2005 278 1649 10 110.7

104 2005 278 1649 11 107.8

104 2005 278 1649 12 111

104 2005 278 1649 13 111.1

104 2005 278 1649 14 111.3

104 2005 278 1649 15 111.3

104 2005 278 1649 16 111.5

104 2005 278 1649 17 111.5

104 2005 278 1649 18 111.7

104 2005 278 1649 19 110.7

104 2005 278 1649 20 111.6

104 2005 278 1649 21 111.6

104 2005 278 1649 22 111.7

104 2005 278 1649 23 111.6

104 2005 278 1649 24 111.7

104 2005 278 1649 25 111.7

104 2005 278 1649 26 111.7

104 2005 278 1649 27 110.7

104 2005 278 1649 28 111.7

104 2005 278 1649 29 111.6

104 2005 278 1649 30 109.7

104 2005 278 1649 31 111.6

104 2005 278 1649 32 111.7

104 2005 278 1649 33 111.7

104 2005 278 1649 34 111.7

104 2005 278 1649 35 111.7

104 2005 278 1649 36 111.8

104 2005 278 1649 37 111.8

104 2005 278 1649 38 111.9

104 2005 278 1649 39 111.8

104 2005 278 1649 40 110.2

104 2005 278 1649 41 110.8

104 2005 278 1649 42 112

104 2005 278 1649 43 111.8

104 2005 278 1649 44 112.1

104 2005 278 1649 45 112.1

 58

104 2005 278 1649 46 112.2

104 2005 278 1649 47 112.3

104 2005 278 1649 48 112.5

104 2005 278 1649 49 112.6

104 2005 278 1649 50 112.8

104 2005 278 1649 51 112.2

104 2005 278 1649 52 113.3

104 2005 278 1649 53 113.7

104 2005 278 1649 54 114.2

104 2005 278 1649 55 114.6

104 2005 278 1649 56 115.3

104 2005 278 1649 57 116

104 2005 278 1649 58 117

104 2005 278 1649 59 116.7

104 2005 278 1649 60 118.9

104 2005 278 1650 1 119.9

104 2005 278 1650 2 121.1

104 2005 278 1650 3 120.8

104 2005 278 1650 4 123.2

104 2005 278 1650 5 124.1

104 2005 278 1650 6 125.1

104 2005 278 1650 7 126

104 2005 278 1650 8 126.7

104 2005 278 1650 9 127.2

104 2005 278 1650 10 127.9

104 2005 278 1650 11 128.2

104 2005 278 1650 12 128.6

104 2005 278 1650 13 128.8

104 2005 278 1650 14 129.1

104 2005 278 1650 15 128.2

104 2005 278 1650 16 129.3

104 2005 278 1650 17 129.3

104 2005 278 1650 18 129.5

104 2005 278 1650 19 129.5

104 2005 278 1650 20 129.6

104 2005 278 1650 21 129.6

104 2005 278 1650 22 129.6

104 2005 278 1650 23 131.2

104 2005 278 1650 24 129.7

104 2005 278 1650 25 129.1

104 2005 278 1650 26 128.3

104 2005 278 1650 27 129.8

104 2005 278 1650 28 129.7

104 2005 278 1650 29 129.6

104 2005 278 1650 30 129.8

104 2005 278 1650 31 131.4

104 2005 278 1650 32 130

104 2005 278 1650 33 130

104 2005 278 1650 34 130.2

 59

104 2005 278 1650 35 130.2

104 2005 278 1650 36 130.3

104 2005 278 1650 37 130.3

104 2005 278 1650 38 130.4

104 2005 278 1650 39 130.7

104 2005 278 1650 40 130.6

104 2005 278 1650 41 130.6

104 2005 278 1650 42 130.7

104 2005 278 1650 43 130.7

104 2005 278 1650 44 130.8

104 2005 278 1650 45 130.8

104 2005 278 1650 46 130.9

104 2005 278 1650 47 128.3

104 2005 278 1650 48 131

104 2005 278 1650 49 131

104 2005 278 1650 50 129.8

104 2005 278 1650 51 128.9

104 2005 278 1650 52 131.2

104 2005 278 1650 53 131

104 2005 278 1650 54 131.1

104 2005 278 1650 55 129.6

104 2005 278 1650 56 131.1

104 2005 278 1650 57 131.1

104 2005 278 1650 58 131.1

104 2005 278 1650 59 131

104 2005 278 1650 60 131.1

104 2005 278 1651 1 131

104 2005 278 1651 2 131.2

104 2005 278 1651 3 130.9

104 2005 278 1651 4 131.1

104 2005 278 1651 5 131

104 2005 278 1651 6 131.1

104 2005 278 1651 7 131

104 2005 278 1651 8 131.1

104 2005 278 1651 9 131

104 2005 278 1651 10 131.1

104 2005 278 1651 11 131.4

104 2005 278 1651 12 131.1

104 2005 278 1651 13 131.1

104 2005 278 1651 14 129.2

104 2005 278 1651 15 131.1

104 2005 278 1651 16 131.1

104 2005 278 1651 17 131

104 2005 278 1651 18 131

104 2005 278 1651 19 129.1

104 2005 278 1651 20 131

104 2005 278 1651 21 130.9

104 2005 278 1651 22 131

104 2005 278 1651 23 130.8

 60

104 2005 278 1651 24 130.9

104 2005 278 1651 25 130.8

104 2005 278 1651 26 130.8

104 2005 278 1651 27 129.5

104 2005 278 1651 28 130.8

104 2005 278 1651 29 130.6

104 2005 278 1651 30 130.8

104 2005 278 1651 31 130.7

104 2005 278 1651 32 130.8

104 2005 278 1651 33 130.6

104 2005 278 1651 34 130.7

104 2005 278 1651 35 130.2

104 2005 278 1651 36 130.8

104 2005 278 1651 37 130.5

104 2005 278 1651 38 128.8

104 2005 278 1651 39 130.8

104 2005 278 1651 40 130.9

104 2005 278 1651 41 130.8

104 2005 278 1651 42 130.9

104 2005 278 1651 43 129.3

104 2005 278 1651 44 131.1

104 2005 278 1651 45 131

104 2005 278 1651 46 131.2

104 2005 278 1651 47 131.2

104 2005 278 1651 48 131.3

104 2005 278 1651 49 131.3

104 2005 278 1651 50 131.4

104 2005 278 1651 51 130.2

104 2005 278 1651 52 131.4

104 2005 278 1651 53 131.4

104 2005 278 1651 54 131.4

104 2005 278 1651 55 131.5

104 2005 278 1651 56 131.5

104 2005 278 1651 57 131.5

104 2005 278 1651 58 131.4

104 2005 278 1651 59 131.5

104 2005 278 1651 60 130.4

